• Title/Summary/Keyword: laser fluorescence

Search Result 417, Processing Time 0.027 seconds

Mixing Efficiency Evaluation in Y-channel Micromixer Using LIF Confocal Microscope (LIF 공초점 현미경을 이용한 Y-채널 마이크로믹서의 혼합 효율 평가)

  • Kim, Kyoung-Mok;Shin, Yong-Su;Ahn, Yoo-Min;Lee, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.159-166
    • /
    • 2007
  • Mixing between two or more reagents is one of important processes in biochemical microfluidics. In efficient micromixer design, it is essential to analyze flow pattern and evaluate mixing efficiency with good precision. In this work, mixing efficiency for Y-channel micromixer is measured by fluorescence intensity using LIF(Laser Induced Fluorescence) Confocal Microscope. The Y-channel micromixers are fabricated with polydimethylsiloxane(PDMS) and those are bonded to glass plate through Plasma bonding. Nile Blue A is injected into the micromixer as a fluorescence dye for measuring of fluorescence intensity by He/Ne laser. For visualization of the flow pattern, dynamic image capturing is carried out using CAM scope. For the comparison with computer simulation, modified SIMPLE algorithm for incompressible flow equation is solved for the same geometry as in the experiment. Throughout the experiments and computer simulation, accurate mixing efficiency evaluation process for a PDMS Y-channel micromixer is established.

Measurement on the Methotrexate in L-${\alpha}$-Phosphatidylcholine Media by Light Sacttering (L-${\alpha}$-Phosphatidylcholine 매질에서 빔산란에 의한 Methotrexate의 측정)

  • Kim, Ki-Jun;Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.251-257
    • /
    • 2013
  • The influences of Methotrexate as fluorophor, scatterer, absorber in turbid material by light scattering were interpreted for the scattered fluorescence intensity and wavelength, it has been studied the molecular properties by laser induced fluorescence spectroscopy. It has been found that the effects of optical properties in scattering media by the optical parameters((${\mu}_s$, ${\mu}_a$, ${\mu}_t$). The value of scattering coefficient ${\mu}_s$ is large by means of the increasing particles of L-${\alpha}$-Phosphatidylcholine, it has been found that the slope decays exponentially as a function of depth from laser source to detector. It may also aid in designing the best model for oil chemistry, laser medicine and application of medical engineering.

Visualization of Combustion by Using Laser Diagnostic Techniques (레이저 진단기법을 이용한 연소 가시화 기술)

  • Chung S. H.;Won S. H.
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.1
    • /
    • pp.52-56
    • /
    • 2004
  • Several visualization techniques of laser diagnostics are presented for combustion phenomena, including Mie scattering for flow, Rayleigh and Raman scattering spectroscopy for major species, laser-induced fluorescence for minor species, and laser-induced incandescence for soot. These techniques have been applied to understand the various combustion phenomena more clearly, including buoyancy-dominant flow system, diffusion flam oscillation, laminar and turbulent lifted flames, flame propagation along a vortex ring, and soot zone characteristics. The usefulness of laser diagnostics on a better understanding of physical mechanism is demonstrated.

  • PDF

Diagnostic Utilization of Laser Fluorescence for Resin Infiltration in Primary Teeth (유치의 레진침투법을 위한 레이저 형광법의 진단적 활용)

  • Park, Soyoung;Jeong, Taesung;Kim, Jiyeon;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.3
    • /
    • pp.265-273
    • /
    • 2019
  • This study was performed to evaluate clinical use of laser fluorescence (LF) to identify early childhood caries lesions suitable for applying resin infiltration. 20 exfoliated primary molars with proximal caries were selected and cut buccolingually cross the central pit for regarding the mesial and distal surfaces respectively. 27 specimens corresponding to ICDAS code 1 and 2 were selected and the LF values were measured. When infiltrant resin was applied, double staining for microscopy detection has done simultaneously. Tooth samples were sliced with 0.7 mm thick. The maximum lesion depth, maximum penetration depth, and average penetration rate were measured from the confocal scanning laser microscope image. Pearson correlation analysis was performed. The intraclass correlation coefficient of LF values shows excellent agreement. LF values had positive correlation with penetration rate, but not lesion depth and penetration depth. Significant correlation between LF readings and penetration rate was verified in deep enamel caries and dentin caries except shallow enamel caries. Infiltrant resin could penetrate with a higher rate and LF values could be increased in more active caries lesions. In assessing radiologically similar caries lesion, laser fluorescence might be useful for identifying caries activity.

A Study on the Development of Measurement Techniques for Thermal Flows in MEMS

  • Ko Han-Seo;Yang Sang-Sik;Yoo Jai-Suk;Kim Hyun-Jung
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.387-395
    • /
    • 2006
  • A review on advanced flow visualization techniques is presented particularly for applications to micro scale heat and mass transport measurements. Challenges, development and applications of micro scale visualization techniques are discussed for the study of heating/evaporating thin films, a heated micro channel, and a thermopneumatic micro pump. The developed methods are (1) Molecular Tagging Fluorescence Velocimetry (MTFV) using 10-nm caged seeding molecules (2) Micro Particle Velocimetry (MPIV) and (3) Ratiometric Laser Induced Fluorescence (LIF) for micro-resolution thermometry. These three methods are totally non-intrusive techniques and would be useful to investigate the temperature and flow characteristics in MEMS. Each of these techniques is discussed in three-fold: (1) its operating principle and operation, (2) its application and measurement results, and (3) its future challenges.

The Application of Time-Resolved Laser Induced Fluorescence Spectroscopy in the Complexation Studies of Eu(III) and Cm(III) with Humic Substances

  • Joong Gill Choi;Oum Ka Won;Chang Yeoul Choi;Hichung Moon;Hyun Sang Shin;Park, Seung Min;Paul Joe Chong
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.72-78
    • /
    • 1993
  • The application of time-resolved laser induced fluorescence spectroscopy (TRLIF) to the complexation studies of Eu(III) and Cm(III) with humic substances is described. Using this method, three different spectroscopic characteristics(excitation spectra, emission spectra, and lifetimes) of these aquo ions and their complexes can be directly measured. By observing shifts in the wavelength and changes in the lifetime and intensities of the fluorescence emission, the information on the complexation behavior of humic substances with these trivalent metal cations in an aqueous solution, as well as energy transfer mechanisms, can be obtained. In addition, this method allows precise spectroscopic quantification of the complexation processes at very low concentrations of both components.

Quantitative Vapor Phase Exciplex Fluorescence Measurements at High Ambient Temperature and Pressure

  • Kim, Tongwoo;Jaal B. Ghandhi
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.157-167
    • /
    • 2003
  • The exciplex fluorescence technique with the TMPD (tetamethyl-Ρ-phenylene-diamine) / naphthalene dopant system was applied in a combustion-type constant-volume spray chamber. A detailed set of calibration experiments has been performed in order to quantify the TMPD fluorescence signal. It has been demonstrated that the TMPD fluorescence intensity was directly proportional to concentration, was independent of the chamber pressure, and was not sensitive to quenching by either water vapor or carbon dioxide. Using a dual heated-jet experiment, the temperature dependence of TMPD fluorescence up to 1000 K was measured. The temperature field in the spray images was determined using a simple mixing model, and an iterative solution method was used to determine the concentration and temperature field including the additional effects of the laser sheet extinction. The integrated fuel vapor concentration compared favorably with the measured amount of injected fuel when all of the liquid fuel had evaporated.

Ultrafast Time-Resolved Laser Spectroscopic Studies of trans-Bis(ferrocene-carboxylato)(tetraphenyl-porphyrinato)tin(IV): Intramolecular Electron-Transfer Dynamics

  • Jang, Joon-Hee;Kim, Hee-Jung;Kim, Hee-Joon;Kim, Chul-Hoon;Joo, Tai-Ha;Cho, Dae-Won;Yoon, Min-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1967-1972
    • /
    • 2007
  • Photophysical properties of a newly-synthesized porphyrin derivative, trans-bis(ferrocene carboxylato)- (5,10,15,20-tetraphenylporphyrinato)tin(IV) [Sn(TPP)(FcCOO)2] were investigated by means of steady-state and fs-time resolved laser spectroscopic techniques, and compared with those of a standard molecule, trans-dichloro( 5,10,15,20-tetraphenyl-porphrinato)tin(IV) [Sn(TPP)Cl2]. The fluorescence spectrum of Sn(TPP)- (FcCOO)2 was observed to exhibit dual emission bands originating from the S2-state and the S1-state, which was greatly quenched as compared to those of Sn(TPP)Cl2. The fs-time resolved fluorescence and transient absorption spectroscopic measurements revealed that the fluorescence quenching is due to formation of the long-lived charge transfer state by intramolecular electron transfer from ferrocene to the S2-excited SnTPP in addition to the enhanced non-radiative deactivation processes.

Distribution Patterns in the Tumor Tissue and Normal Tissue according to the Administration Methods of ALA and ALA-Methylester (ALA 및 ALA-Methylester의 투여에 따른 종양조직 및 정상조직에의 분포양상에 대한 연구)

  • Chung Phil-Sang;Jung Sang-Oun;Ahn Jin-Chul;Lee Sang-Joon;Yoon Jun-Sik
    • Korean Journal of Head & Neck Oncology
    • /
    • v.19 no.1
    • /
    • pp.21-24
    • /
    • 2003
  • Objectives: In this report, we confirmed the distributed pattern of ALA and ALA-methylester in normal and tumor-bearing region. Materials and Methods: ALA and ALA-methylester were administered to nude mouse by intratumoral, subcutaneous and intravenous injection. After injection, the fluorescence in normal and tumor region was measured by LESA (laser electronic spectrum analyzer). Results: The tumor-specificity of ALA and ALA-methylester was shown in the case of intratumoral injection. In all case, the fluorescence caused by ALA and ALA-methylester was maximally increased in 2 hours after injection. Then while the fluorescence level was rapidly decreased to control level in normal region, it was still remained in tumor region. Conclusion: According to this result, The intratumoral injection was more efficient administration method for PDT/PDD than subcutaneous and intravenous injection.

Kinetic Study on the Low-lying Excited States of Ga Atoms in Ar

  • Kuntack Lee;Ju Seon Goo;Ja Kang Ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.8
    • /
    • pp.663-669
    • /
    • 1994
  • Decay kinetics of Ga(5s), Ga(5p) and Ga(4d) atoms in Ar were studied by laser induced fluorescence technique. Theground state gallium atoms in the gas phase were generated by pulsed dc discharge of trimethyl gallium and argon mixtures. Both pulsed discharge and YAG-DYE laser system were controlled by a dual channel pulse generator and the delay time between the end of discharge and laser pulses was set 3.0-6.0 ms. The Ga(5s) and Ga(4d) atoms were generated by single photon excitation from the ground state Ga atoms and radiative lifetimes as well as the total quenching rate constants in Ar were obtained from the pressure dependence of the fluorescence decay rates. The Ga(5p) atoms were populated by a two-photon excitation method and the cascade fluorescence from Ga(5s) atoms were analyzed to extract quenching rate constant of Ga(5p) atoms by Ar in addition to radiative lifetimes of Ga(5p) state. The magnitudes of the quenching rate constants by Ar for the low-lying excited states of Ga atoms are 1.6-3$ {\times}10^{-11}cm^3$ molecul$e^{-1}s^{-1}$, which are much larger than those for alkali, alkaline earth and Group 12 metals. Based on the measured rate constants, kinetic simulations were done to assign state-to-state rate constants.