• Title/Summary/Keyword: laser etching

Search Result 256, Processing Time 0.025 seconds

Laser-Induced Thermochemical Wet Etching of Mn-Zn Ferrite (Mn-Zn 페라이트의 레이저 유도 열화학 습식식각)

  • Lee, Kyoung-Cheoul;Lee, Cheon
    • Electrical & Electronic Materials
    • /
    • v.10 no.7
    • /
    • pp.668-673
    • /
    • 1997
  • A Single-crystalline Mn-Zn Ferrite (110 orientation) was masklessly etched by focused Ar laser irradiation in an H$_3$PO$_4$ solution. The depth of the etched grooves increases with increasing a laser power, decreasing a scan speed, and increasing the H$_3$PO$_4$concentration. The width of the etched grooves increases with a increasing laser power, but was relatively insensitive to the scan speed and H$_3$PO$_4$concentration. High etching rate of up to 714 ${\mu}{\textrm}{m}$/s and an aspect ratio of 6 for vertical slab structure have been obtained by the light-guiding effect of the laser bean in the H$_3$PO$_4$ solution.

  • PDF

Laser Patterning of Indium Tin Oxide for Flat Panel Display (평판디스플레이를 위한 Indium Tin Oxide의 레이저 페터닝)

  • Ahn, Min-young;Lee, Kyoung-cheol;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.340-343
    • /
    • 2000
  • ITO(Indium Tin Oxide) films for transparent electrodes of FPD(Flat Panel Display) were patterned in atmosphere using laser. A pulse type(repetition rate of 10 Hz) Q-switched Nd:YAG laser which can generate the fundamental wavelength at 1064 nm or its harmonics(532, 266 nm) was used for Patterning of the ITO film. In case of using the second harmonic(532 nm) of Nd:YAG laser, the ITO film(thickness of 20 nm) was removed clearly with a laser fluence of 5.2 J/$\textrm{cm}^2$ and a beam scan speed of 200${\mu}{\textrm}{m}$/s. But the glass substrate was damaged when the laser fluence was over 5.2 J/$\textrm{cm}^2$. We discussed the etching mechanism of the ITO film using Nd:YAG laser with observation of the etching characteristics including a depths and widths of ITO films as a function of laser fluence using SEM(Scanning Electron Microscopy) and surface profiler($\alpha$-step 500).

  • PDF

Deduction of Optimal Conditions for Acrylic Etching Technique by using CO2 Laser

  • Kim, Hee-Je;Song, Keun-Ju;Park, Sung-Jin;Seo, Hyun-Woong;Kim, Ho-Sung;Choi, Jin-Young;Park, Sung-Joon
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.106-111
    • /
    • 2007
  • Laser cutting with the micro-control technique has great potential to be employed for acrylic machining. In this paper, the optimal conditions of acrylic etching have been investigated. The three parameters such as laser power, moving velocity, and thickness of acrylic are experimented to find out optimal conditions. From these experimental results, we have known that it is very important to control accurate power by the TRIAC switching technique. The best condition of acrylic etching is performed 10 Wand 72 mm/sec at the plastic thickness of 1.33 mm. The other case is performed 10 W and 48 mm/sec, and 12 W and 56 mm/sec at the acrylic thickness of 2.00mm, respectively.

Laser Direct Ory Etching for $Al_{0.3}Ga_{0.7}As/GaAs$ Multi-layer Structures ($Al_{0.3}Ga_{0.7}As/GaAs$ 다층구조의 레이저 직접 건식에칭)

  • Park, Se-Ki;Lee, Cheon;Kim, Seong-Il;Kim, Eun-Kyu;Min, Suk-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1980-1981
    • /
    • 1996
  • Laser direct dry etching is a new technique in semiconductor processing which has a lot of advantage, including decrease of etching-induced damage, maskless, photoresistiess, and high selectivity. This study presents characteristics of a laser direct dry etching for $Al_{0.3}Ga_{0.7}As/GaAs$ multi-layer structures for the first time. In this study, we were able to obtain the unusual aching profiles. The cross sectional analysis of etched groove was peformed for reaction characteristics and their applications.

  • PDF

Laser-Induced Wet Etching of Mn-Zn Ferrite (페라이트의 레이저 유도 습식 에칭)

  • Lee, Cheon;Lee, Kyoung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.248-250
    • /
    • 1996
  • VTR 자기헤드의 핵심소재로 사용되는 ferrite는 VTR 의 주기능인 영상의 기록 및 재생역할에 가장 중요한 소재이다. 이러한 종류의 head는 지금까지 mask wet chemical etching과 mechanical Process 에 의해 제작 되어왔다. 그러나 기록용량의 중가로 자기장치의 recording density를 높일것이 요구됨에 따라 자기헤드의 gap width를 줄일 필요가 있게 되었다. 본 연구는 mask와 photoresist를 사용하지 않고 ferrite를 직접 미세가공 하는 laser-induced wet etching을 이용하여 자기헤드의 기록용량을 높이고자 하였다. $Ar^+$ laser ( 파장 514 nm )를 빔 확장기와 렌즈를 사용 하여 직경 $1.8{\mu}m$ 로 집속하고, $100{\sim}500\;mW$의 출력 변화를 주어 실험을 하였다. 인산 수용액 (45, 65, 85 %)을 etchant로 사용하여 $5{\sim}30{\mu}m/sec$의 주사속도로 etching 하여, 미세선폭과 high aspect ratio를 갖는 groove를 얻을 수 있었다.

  • PDF

Photothermal and Photochemical Investigation on Laser Ablation of the Polyimide by 355nm UV Laser Processing (355nm UV 레이저 가공에 의한 폴리이미드의 광화학적 및 광열적 어블레이션에 관한 연구)

  • Oh, Jae-Yong;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.147-152
    • /
    • 2007
  • UV laser ablation of polyimide is a combination of photochemical and photothermal mechanism. Photochemical mechanism is that molecular bonds are broken by photon energy and photothermal is evaporation and melt expulsion. When the laser processing, the etching depth needs to be calculated for prediction of processing result. In this paper, in order to predict the laser etching depth of polyimide by UV laser with the wavelength of 355nm, the theoretical model which includes both the photothermal and the photochemical effect was introduced. The model parameters were obtained by comparing with experimental results. The 3rd harmonic $Nd:YVO_4$ laser system was used in the experiment. From these experimental and theoretical results, the laser ablation of a polyimide was verified to achieve the highest quality microstructure.

Thin Film Micromachining Using Femtosecond Laser Photo Patterning of Organic Self-assembled Monolayers

  • Chang Won-Seok;Choi Moo-Jin;Kim Jae-Gu;Cho Sung-Hak;Whang Kyung-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.13-17
    • /
    • 2006
  • Self-Assembled Monolayers (SAMs) formed by alkanethiol adsorption to thin metal film are widely being investigated for applications as coating layer for anti-stiction or friction reduction and in fabrication of micro structure of molecules and bio molecules. Recently, there have been many researches on micro patterning using the advantages of very thin thickness and etching resistance of Self-Assembled Monolayers in selective etching of thin metal film. In this report, we present the several machining method to form the nanoscale structure by Mask-Less laser patterning using alknanethiolate Self-Assembled Monolayers such as thin metal film etching and heterogeneous SAM structure formation.

Micromachining Thin Film Using Femtosecond Laser Photo Patterning Of Organic Self-Assembled Monolayers. (유기 자기조립 단분자막의 레이저 포토 패터닝을 이용한 박막 미세 형상 가공 기술)

  • Choi Moojin;Chang Wonseok;Kim Jaegu;Cho Sunghak;Whang Kyunghyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.160-166
    • /
    • 2004
  • Self-Assembled Monolayers(SAMs) by alkanethiol adsorption to thin metal film are widely being investigated fer applications as coating layer for anti-stiction or friction reduction and in fabrication of micro structure of molecule and bio molecule. Recently, there have been many researches on micro patterning using the advantages of very thin thickness and etching resistance of Self-Assembled Monolayers in selective etching of thin metal film. In this report, we present the several machining method to form the nanoscale structure by Mask-Less laser patterning using alknanethiolate Self-Assembled Monolayers such as thin metal film etching and heterogeneous SAMs structure formation.

Analysis of single/poly crystalline Si etching characteristics using $Ar^+$ ion laser ($Ar^+$ ion laser를 이용한 단결정/다결정 Si 식각 특성 분석)

  • Lee, Hyun-Ki;Park, Jung-Ho;Lee, Cheon
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1001-1003
    • /
    • 1998
  • In this paper, $Ar^+$ ion laser etching process of single/poly crystalline silicon with $CCl_{2}F_{2}$ gas is studied for MEMS applications. To investigate the effects of process parameters, laser power, gas pressure, scanning speed were varied and multiple scanning was carried out to obtain high aspect ratio. In addition, scanning width was varied to observe the trench profile etched in repeating scanning cycle. From the etching of $2.6{\mu}m$ thick polycrystalline Si deposited on insulator, trench with flat bottom and vertical side wall was obtained and it is possible to apply this results for MEMS applications.

  • PDF

Laser Direct Etching on Transparent Conductive Oxide Films Sputtered on Polycarbonate Substrates (PC 기판상에 스퍼터링된 투명전도 산화막의 레이저 식각 특성)

  • Lee, Jeongmin;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.146-150
    • /
    • 2014
  • As a method of simple patterning of transparent conductive oxide (TCO) films deposited on flexible substrates, laser direct etching was carried out on TCO films sputtered on polycarbonate (PC) substrates. As a result of different binding energies in TCO films, indium tin oxide (ITO) and indium gallium zinc oxide (IGZO) were more easily etched than zinc oxide with different $Nd:YVO_4$ laser beam conditions.