• Title/Summary/Keyword: laser distance sensor

Search Result 141, Processing Time 0.036 seconds

Automatic Landing System using a Trajectory of Laser Beam (레이저 빔 궤적을 이용한 자동 랜딩 시스템)

  • Hwang, Jin-Ah;Nam, Gi-Gun;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.39-45
    • /
    • 2007
  • This paper proposes a method of container position measurement using automatic landing system that is estimated by a laser range finder. In the most of container position measurement methods, CCD cameras or laser scanners have been used to get the source data. However those sensors are not only weak for disturbances, for examples, the light, fog, and rain, but also the system cost is high. When the spreader arrives at the goal position, it is still swung by inertia or by wind effect. In this paper, the spreader swung data have been used to find the container position. The laser range finder is equipped in the front side of spreader. It can measure distance and relative position between spreader and container. This laser range finder can be rotated as desired by a motor. And a tilt sensor is equipped on the spreader to measure spreader sway. The relative position information between the spreader and a container using the laser range finder and tilt sensor is estimated through the geometrical analysis.

Monitoring of waterjet cutting free surface using laser sensor (레이저 센서를 이용한 워터젯 절삭 자유면 모니터링)

  • Oh, Tae-Min;Hong, Chang-Ho;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.5
    • /
    • pp.469-481
    • /
    • 2013
  • The monitoring of a free surface generated by waterjet cutting technology is very important for an efficient construction process. In this study, experiments using a laser sensor were performed to provide a data processing method and to determine optimized parameters. The experimental parameters here are the angular resolution, measurement distance, and free surface cutting shape. The results show that the monitoring resolution increases with a decrease in the angular resolution and the horizontal measurement distance and with an increase in the cutting (free surface) width. This laser monitoring method can be applied during the measurement of free surface shapes and depths in situ.

Measurement of a Shape of Glass Using the Hologram Optical System

  • Lee, Young-Chon;Youn, Sang-Pil;Ryu, Young-Kee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.53.2-53
    • /
    • 2001
  • The Non-Contact Optical Sensor using the Hologram Laser for CD Pickup was developed to measure a shape of transparent objects and shown a good performance. Therefore the problems caused by the contact sensor are solved by using the Non-Contact Sensor. The Non-Contact Sensor has to move toward the objects and obtain the Focus Error Signal to measure a position of transparent objects. However, if the distance between the sensor and the object is shorter than the working distance of the objective lens, the sensor will be collided against the objects. In this paper we proposed a new algorithm to estimate the start position of the Focus Error Signal to solve the problems of collision between the sensor and the objects. In addition, we verified that the algorithm is free from the collision in the real time measurement.

  • PDF

Real-Time Seam Tracking System Using a Visual Device with Vertical Projection of Laser Beam (레이저빔 수직투사 구조의 시각장치를 이용한 실시간 용접선추적 시스템)

  • Kim, Jin-Dae;Lee, Jeh-Won;Shin, Chan-Bai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.10
    • /
    • pp.64-74
    • /
    • 2007
  • Because of the size and environment in the shipbuilding process, the portable type robot is required for the automatic seam tracking. For this reason, the structure of laser sensor should be considered in the initial design step and the coordinate transformation between welding robot and laser sensor, which is joint finder, must be identified exactly and the real time tracking algorithm based on these consideration could be developed. In this research, laser displacement sensor in which its structure is laser beam's vertical projection, is developed to recognize the location of weld joint. In practical applications, however, images of weld joints are often degraded because of the surface specularity or spatter. To overcome the problem, the constrained joint finding algorithm is proposed. In the approach of coordinate conversion rule for the visual feedback control among welding torch, robot body and laser sensor is applied by the same reference point method. In the real time seam tracking algorithms we propose constrained sampling method which uses look ahead distance. The RLS(Recursive Least Square) filter is applied to obtain the smooth tracking path from the sensitive edge data. From the experimental results, we could see the possibility that the developed laser sensor with proposed processing algorithm and real time seam tracking method can be used as a welding under the shipbuilding condition.

An Obstacle Detection and Avoidance Method for Mobile Robot Using a Stereo Camera Combined with a Laser Slit

  • Kim, Chul-Ho;Lee, Tai-Gun;Park, Sung-Kee;Kim, Jai-Hie
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.871-875
    • /
    • 2003
  • To detect and avoid obstacles is one of the important tasks of mobile navigation. In a real environment, when a mobile robot encounters dynamic obstacles, it is required to simultaneously detect and avoid obstacles for its body safely. In previous vision system, mobile robot has used it as either a passive sensor or an active sensor. This paper proposes a new obstacle detection algorithm that uses a stereo camera as both a passive sensor and an active sensor. Our system estimates the distances from obstacles by both passive-correspondence and active-correspondence using laser slit. The system operates in three steps. First, a far-off obstacle is detected by the disparity from stereo correspondence. Next, a close obstacle is acquired from laser slit beam projected in the same stereo image. Finally, we implement obstacle avoidance algorithm, adopting the modified Dynamic Window Approach (DWA), by using the acquired the obstacle's distance.

  • PDF

A Study of the Obstacle Detection System Using Virtual Bumper(1) (Virtual Bumper를 이용한 장애물감지에 관한 연구(I))

  • 최성락;김선호;박경택;유득신
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.315-320
    • /
    • 1999
  • Obstacle Detection System(ODS) is a essential system for automated vehicle, such as AGV(Automatic Guided Vehicle), mobile robot. Automated vehicle must have a capability to detect and to avoid obstacles to guarantee a safe driving condition. To implement obstacle detection system, virtual bumper concept adapted. Like real bumper in a car, such as in the truck, it protects vehicle from collision using laser distance sensor. When an obstacle(such as other vehicle, building, etc) intrudes this virtual bumper area, a virtual force is calculated and produces necessary strategy to be able to avoid collision. In this paper, simplified virtual bumper concept is presented, and various problems when happens to implement are discussed.

  • PDF

Development of Ranging Sensor Based on Laser Structured Light Image (레이저 구조광 영상기반 거리측정 센서 개발)

  • Kim, Soon-Cheol;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.309-314
    • /
    • 2015
  • In this study, an embedded ranging system based on a laser structured light image is developed. The distance measurement by the structured light image processing has efficient computation because the burdensome correspondence problem is avoidable. In order to achieve robustness against environmental illumination noise and real-time laser structured light image processing, a bandpass optical filter is adopted in this study. The proposed ranging system has an embedded image processor performing the whole image processing and distance measurement, and so reduces the computational burden in the main control system. A system calibration algorithm is presented to compensate for the lens distortion.

Development of Real-time Monitoring System for Muscle Tension by High Intensity Laser Therapy (고출력 레이저 치료를 통한 근강직 완화의 실시간 모니터링 연구)

  • Hong, Jungsun;Youn, Jong-In
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.128-134
    • /
    • 2012
  • Currently, high-intensity laser therapy (HILT) is increasingly used in various muscle disorders like muscle tension. Our proposed study includes the development of the real-time monitoring system using a myotonometer for HILT. The developed system consists of a piezoelectric sensor and laser distance sensor for muscle stiffness monitoring during the treatments. The results demonstrated that the level of muscle tension was rapidly decreased after 3 minutes of the high-intensity laser treatment when compared to the control group. The combined HILT and realtime muscle tension monitoring system may help to evaluate the therapeutic procedure and efficient treatments for various muscle pains.

The Development of Tire Safety Recognition Application with Pressure and Laser Sensors (압력센서와 레이저 센서를 이용한 타이어 안전 인지 애플리케이션 개발)

  • Mo, Won-Ki;An, Jung-Woo;Yoo, Seung-Jea;Lim, Ji-Won;Lee, Boong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.725-734
    • /
    • 2021
  • To prevent tire accidents, we developed an application that can check tire safety using the app-inventor and the bluetooth communication. The temperature sensor measures ambient temperature, the pressure sensor measures tire pressure, the laser sensor has a distance of more than 50mm, and an angle of 45° to measure for the optimal tire. We have developed an application that determines tire condition based on measured wear and tear levels, works through the Bluetooth module via App Inventor, and identifies tire condition and expected replacement condition on the user's mobile phone.