• Title/Summary/Keyword: laser cut

Search Result 226, Processing Time 0.024 seconds

Analysis of Characteristics of Half-Cut Solar Cells According to the NDC Process for High-Power Modules (고출력 모듈을 위한 NDC 공정에 따른 Half-Cut 태양전지의 특성 분석)

  • Guemhee Ham;Jeahyeong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.6
    • /
    • pp.637-643
    • /
    • 2024
  • One method to increase the output of solar modules is the application of the Half-cut technique, which requires a scribing process involving direct irradiation of infrared lasers on the solar cells. During this process, the laser melts the surface of the solar cells at high temperatures, enabling mechanical division, but this can lead to output loss due to thermal degradation caused by the laser. To minimize such losses, a low-temperature and low-loss division method has been devised. In this study, we compared the electrical characteristics and leakage currents affecting output degradation between the newly devised low-temperature and low-loss cell division method and the conventional laser division method. Additionally, we conducted a 3-point flexural test to evaluate the mechanical properties of both methods.

Development of Laser Process and System for Stencil Manufacturing (레이저 스텐실 가공 시스템 및 공정 기술 개발)

  • Lee, Jae-Hoon;Suh, Jeong;Kim, Jeng-O;Shin, Dong-Sig;Lee, Young-Moon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.106-113
    • /
    • 2002
  • Stencil is used normally as a mask for seeder pasting on pad of PCB. The objective of this study is to develop stencil cutting system and determine optimal conditions which make good-quality stencil by using a Nd:YAG laser. The effects of process parameters such as laser power, type of mask, gas pressure, cutting speed and pulse width old the cut edge quality were investigated. In order to analyse fille cut surface characteristics(roughness, kerf width, dross) optical microscopy, SEM photography and roughness test were used. As a result, the optimal conditions of process parameters were determined, and the practical feasibility of the proposed system is also examined by using a commercial Gerber file for PCB stencil manufacturing.

Study of Laser Trimming and Cutting of Printed Circuit Board by using UV Laser with Nanosecond Pulse Width (나노초 펄스폭을 갖는 자외선 레이저를 이용한 전자회로기판의 저항체 트리밍과 절단공정 특성에 관한 연구)

  • Ryu, Kwang-Hyun;Shin, Suk-Hoon;Park, Hyeong-Chan;Nam, Gi-Jung;Kwon, Nam-Ic
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.23-28
    • /
    • 2010
  • Resistance trimming and cutting processes of printed circuit board by making use of high power UV laser with nano-second pulse width have been proposed and investigated experimentally. Also laser-based application system with high flexibility and complex has been designed and adopted power controller, auto beam size control, auto-focusing and control program developed for ourselves. The function of each module shows that they can be reliable for industrial equipments. Resistance trimming method used a plunge and double cut process with $20{\mu}m$ spot size beam. Results show that double cut process is more effective to control resistance trimming in precision than plunge cut process.

Development of laser process for stencil manufacturing (스텐실 제작용 레이저 공정기술 개발)

  • 신동식;이영문;이제훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.989-992
    • /
    • 1997
  • The objective of this study is to develop stencil cutting process and determine optimal conditions which make good-quality stencil by using a Nd:YAG laser. The effects of process parameters such as laser power, type of mask, gas pressure, cutting speed and pulse width on the cut edge quality were investigated. In order to analyze the cut surface characteristics(roughness, kerf width, dross) optical microscopy, SEM photography and roughness test were used. A a results, the optimal conditions of process parameters were determined, and the practical feasibility of the proposed system is also examined by using a commercial gerber file for PCB stencil manufacturing.

  • PDF

A Study on the Optimal Condition Determination of Laser Scattering Using the Design of Experiment (실험계획법을 이용한 레이저 산란의 최적 조건 결정에 대한 연구)

  • Han, Jae-Chul;Kim, Gyung-Bum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.58-64
    • /
    • 2009
  • In this paper, an inspection mechanism based on laser scattering has been developed for the surface evaluation of infrared cut-off filters, and optimum conditions of laser scattering are determined using the design of experiment. First of all, attributes and influence factors of laser scattering are investigated and then a laser scattering inspection mechanism is newly designed based on analyses of laser scattering parameters. Also, Taguchi method, one of experimental designs, is used for the optimum condition selection of laser scattering parameters and the optimum condition is determined in order to maximize the detection capability of surface defects. Experiments show that the proposed method is useful in a consistent and effective defect detection and can be applied to surface evaluation processes in manufacturing.

Laser Cutting of Thick Diamond Films Using Low-Power Laser (저 출력 레이저를 이용한 다이아몬드 후막의 절단)

  • 박영준;백영준
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.140-144
    • /
    • 2000
  • Laser cutting of thick diamond films is studied using a low-power(10 W) copper vapor laser. Due to the existence of the saturation depth in laser cutting, thick diamond films are not easily cut by low-power lasers. In this study, we have adopted a low thermalconductivity underlayer of alumina and a heating stage (up to 500$^{\circ}C$ in air) to prevent the laser energy from consuming-out and, in turn, enhance the cutting efficiency. Aspect ratio increases twice fromm 3.5 to 7 when the alumina underlayer used. Adopting a heating stage also increases aspect ratio and more than 10 is obtained at higher temperatures than 400$^{\circ}C$. These results show that thick diamond films can be cut, with low-power lasers, simply by modifying the thermal property of underlayer.

  • PDF

Cutting Technique for Biodegradable Rope using a CW CO2 Laser with TEM00 mode

  • Lee, Dong-Gil;Kim, Seong-Hun;Park, Seong-Wook;Yang, Yong-Su;Xu, Guo-Cheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.576-581
    • /
    • 2012
  • A 23 W continuous wavelength $CO_2$ laser system exited by a high-frequency LCC resonant converter is adapted to cut a biodegradable rope fabricated with polybutylene succinate. As the biodegradable rope consists of three twisted strands, the thickness changes relative to the position of the laser beam and we thus propose a method to determine exact cutting depth. In order to obtain the parameters related to the rope cutting, the experimental and theoretical cutting depths are compared and analyzed for a range of laser heat sources. The melted thickness and groove width of the cut biodegradable rope are also examined. The proposed theoretical cutting depth depends on the incident power and target velocity ratio. From these experimental results, the biodegradable rope with a diameter of 22 mm can be cut with a heat source of 50 J/cm resulting in a melted thickness of 1.96 mm and a groove width of 0.65 mm. The laser system is shown to be perfect tool for the processing of biodegradable rope without the occurrence of raveling.

Effects of an Auto-tracking of the Focal Distance on the Quality of the Cut Part in the Laser Cutting of a Low Carbon Sheet (저탄소 강판의 레이저 절단에서 자동 초점거리 추적이 절단 품질에 미치는 영향)

  • Ahn, Dong-Gyu;Byun, Kyung-Won;Yoo, Young-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.101-107
    • /
    • 2007
  • The objective of this research work is to investigate into effects of an auto tracking of the focal distance on the quality of the cut part in the cutting of a low carbon sheet using a high-power CW Nd:YAG laser. An auto-tracking system with a capacitance based distance control loop has been employed to perform a real control of the focal distance. In order to examine the influence of the auto-tracking of a focal distance on the optimum focal distance, the kerfwidth, surface roughness and the formation of the cut section, several linear cutting tests have been carried out using the auto-tracking system. The results of experiments have been shown that the optimum focal distance is 0.9mm. In addition, it has been shown that the variation of kerfwidth and the surface roughness of the cut part with control of the focal distance are reduced 40-80% and 30-55% in comparison with those of the cut part without tracking of the focal distance. From the results of the experiments, it has been found that the real time tracking of the focal distance can improve the part quality.

Laser Cutting Characteristics of Cold Rolled Steel Sheets (레이저를 이용한 박강판의 절단특성)

  • 이기호;김기철;이종훈
    • Journal of Welding and Joining
    • /
    • v.13 no.4
    • /
    • pp.113-121
    • /
    • 1995
  • This study deals with the quality and the optimum range of laser cutting process. Cold rolled steel sheets for automobile application were cut by a high power CO$_{2}$ laser system with beam quality of TEM$_{\infty}$ mode. Both process parameters such as travel speed and assist gas pressure, and quality factors were considered to optimize the laser cutting. It was revealed that the thinner the sheet thickness, the less effect of oxidation energy for contributing the cutting process. High speed photographs demonstrated that molten spot on the cut surface moved in a random and vigorous manner according to its viscosity and the flowing direction of assist gas, which resulted in so called striation. Laser cutting produced a very smooth surface of average roughness(Ra) about less than 1.5.mu.m at the optimum range. It was also shown that the characteristics of dross formation was influenced by the flowing durection of assist gas and the fluidity of molten metal drop..

  • PDF