DOI QR코드

DOI QR Code

Analysis of Characteristics of Half-Cut Solar Cells According to the NDC Process for High-Power Modules

고출력 모듈을 위한 NDC 공정에 따른 Half-Cut 태양전지의 특성 분석

  • Guemhee Ham (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Jeahyeong Lee (Department of Electrical and Computer Engineering, Sungkyunkwan University)
  • 함금희 (성균관대학교 전자전기컴퓨터공학과) ;
  • 이재형 (성균관대학교 전자전기컴퓨터공학과)
  • Received : 2024.07.02
  • Accepted : 2024.08.15
  • Published : 2024.11.01

Abstract

One method to increase the output of solar modules is the application of the Half-cut technique, which requires a scribing process involving direct irradiation of infrared lasers on the solar cells. During this process, the laser melts the surface of the solar cells at high temperatures, enabling mechanical division, but this can lead to output loss due to thermal degradation caused by the laser. To minimize such losses, a low-temperature and low-loss division method has been devised. In this study, we compared the electrical characteristics and leakage currents affecting output degradation between the newly devised low-temperature and low-loss cell division method and the conventional laser division method. Additionally, we conducted a 3-point flexural test to evaluate the mechanical properties of both methods.

Keywords

Acknowledgement

본 연구는 한국에너지기술평가원의 '태양광 설치단가와 LOCE 경쟁력 확보를 위한 700 W+ 고출력 모듈 개발 및 양산성 검증'(과제번호: 2022303001 0180)의 일환으로 수행되었습니다. 본 연구는 2023년도 산업통상자원부의 재원으로 한국에너지 기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(RS-2023-00266248).

References

  1. J. S. Park, W. J. Oh, S. H. Lee, and J. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 32, 187 (2019). doi: https://doi.org/10.4313/JKEM.2019.32.3.187 
  2. J. Kim, S. Ur, D. Lim, and J. Lee, J. Korean Sol. Energy Soc., 43, 63 (2023). doi: https://doi.org/10.7836/KSES.2023.43.3.063 
  3. Z. Otgongerel, J. Moon, D. Y. Jun, G. Park, H. Nam, O. Kwon, H. Lim, and S. H. Kim, J. Korean Phys. Soc., 83, 437 (2023). doi: https://doi.org/10.1007/s40042-023-00910-x 
  4. S. Hwang and Y. Kang, Energy Rep., 10, 678 (2023). doi: https://doi.org/10.1016/j.egyr.2023.07.023 
  5. S. E. Lee, J. S. Park, W. J. Oh, and J. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 291 (2020). doi: https://doi.org/10.4313/JKEM.2020.33.4.291 
  6. E. B. Noh, J. S. Bae, J. H. Kim, J. H. You, and J. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 433 (2021). doi: https://doi.org/10.4313/JKEM.2021.34.6.5 
  7. S. W. Choi, J. H. Ryu, and C. G. Lee, J. Korea Acad. Ind. Coop. Soc., 12, 847 (2011). doi: https://doi.org/10.5762/KAIS.2011.12.2.847 
  8. P. Maric, I. Marasovic, I. Bevanda, and T. Betti, Proc. 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech) (IEEE, Split/Bol, Croatia, 2022). doi: https://doi.org/10.23919/splitech55088.2022.9854346 
  9. C. G. Park and K. E. Lee, J. Korean Data Inf. Sci. Soc., 25, 305 (2014). doi: https://doi.org/10.7465/JKDI.2014.25.2.305 
  10. H. You, M. Kang, S. Yi, S. Hyun, and C. Kim, J. Weld. Joining, 39, 36 (2021). doi: https://doi.org/10.5781/JWJ.2021.39.1.4