• Title/Summary/Keyword: large-scale infrastructures

Search Result 48, Processing Time 0.023 seconds

Railway System Model for Multi-Train Traffic Simulator (다중열차 시뮬레이션을 위한 철도시스템 모델)

  • 김동희;김성호;오석문
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.2
    • /
    • pp.47-54
    • /
    • 2001
  • Railway companies have been faced with many changes in the railway environment. To cope immediately with the influence of environment and to improve productivity, an efficient train operation system and related core technologies must be introduced. The railway system is composed of large scale infrastructures and high-cost trains. Simulation method is one of core technologies and also efficient tool for planning and analyzing these kinds of complex system. In this research, we review basic simulation programming models and present a modeling for the elements of railway system such as rail-line infrastructure, train, time table and operational route. Additionally, some considerations on the development of multi-train traffic simulator for KyongBu-line are discussed.

  • PDF

Design, calibration and application of wireless sensors for structural global and local monitoring of civil infrastructures

  • Yu, Yan;Ou, Jinping;Li, Hui
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.641-659
    • /
    • 2010
  • Structural Health Monitoring (SHM) gradually becomes a technique for ensuring the health and safety of civil infrastructures and is also an important approach for the research of the damage accumulation and disaster evolving characteristics of civil infrastructures. It is attracting prodigious research interests and the active development interests of scientists and engineers because a great number of civil infrastructures are planned and built every year in mainland China. In a SHM system the sheer number of accompanying wires, fiber optic cables, and other physical transmission medium is usually prohibitive, particularly for such structures as offshore platforms and long-span structures. Fortunately, with recent advances in technologies in sensing, wireless communication, and micro electro mechanical systems (MEMS), wireless sensor technique has been developing rapidly and is being used gradually in the SHM of civil engineering structures. In this paper, some recent advances in the research, development, and implementation of wireless sensors for the SHM of civil infrastructures in mainland China, especially in Dalian University of Technology (DUT) and Harbin Institute of Technology (HIT), are introduced. Firstly, a kind of wireless digital acceleration sensors for structural global monitoring is designed and validated in an offshore structure model. Secondly, wireless inclination sensor systems based on Frequency-hopping techniques are developed and applied successfully to swing monitoring of large-scale hook structures. Thirdly, wireless acquisition systems integrating with different sensing materials, such as Polyvinylidene Fluoride(PVDF), strain gauge, piezoresistive stress/strain sensors fabricated by using the nickel powder-filled cement-based composite, are proposed for structural local monitoring, and validating the characteristics of the above materials. Finally, solutions to the key problem of finite energy for wireless sensors networks are discussed, with future works also being introduced, for example, the wireless sensor networks powered by corrosion signal for corrosion monitoring and rapid diagnosis for large structures.

Wireless sensor network design for large-scale infrastructures health monitoring with optimal information-lifespan tradeoff

  • Xiao-Han, Hao;Sin-Chi, Kuok;Ka-Veng, Yuen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.583-599
    • /
    • 2022
  • In this paper, a multi-objective wireless sensor network configuration optimization method is proposed. The proposed method aims to determine the optimal information and lifespan wireless sensor network for structural health monitoring of large-scale infrastructures. In particular, cluster-based wireless sensor networks with multi-type of sensors are considered. To optimize the lifetime of the wireless sensor network, a cluster-based network optimization algorithm that optimizes the arrangement of cluster heads and base station is developed. On the other hand, based on the Bayesian inference, the uncertainty of the estimated parameters can be quantified. The coefficient of variance of the estimated parameters can be obtained, which is utilized as a holistic measure to evaluate the estimation accuracy of sensor configurations with multi-type of sensors. The proposed method provides the optimal wireless sensor network configuration that satisfies the required estimation accuracy with the longest lifetime. The proposed method is illustrated by designing the optimal wireless sensor network configuration of a cable-stayed bridge and a space truss.

A Study on the Large-Scale Power Blackout Management System in the Level of National Crisis Management (대규모 정전상태에 대비한 국가위기관리 방향에 관한 연구)

  • Cho, Kwang-Rae;Joo, Il-Yeob
    • Korean Security Journal
    • /
    • no.10
    • /
    • pp.387-407
    • /
    • 2005
  • Thanks to the developments of IT technologies, such critical infrastructures as fundamental structures of energies, material circulations, monetary circulations, and living necessaries are intertwined as well as mutually dependent. In this respect, the fact that national infrastructures are closely related to IT infrastructures implies not only expected benefits to provide diverse information-based services, but also anticipated costs to bring about new dangers. However, in spite of these threats, traditional researchers have not put enough interests in these indirect danger, which yield the damages in broad areas through paralyzing risk management systems, although they have investigated such direct threats as nuclear accidents, conflagrations, traffic troubles, and gasoline accidents. Considering that the tendency to depend on electricity, so-called electrification, which is caused by automation and informationalization, is intensified in all parts of society, the breakout problem as a factor to inhibit securities in information-oriented society is significant. Thus, the problems of large-scale power blackout should be treated as national crises. Also, preparation systems for large-scale power blackout have to be provided quickly. In this paper, with analyzing various cases of large-scale power blackout and investigation the causes of them, researches on the blackout management systems of Korea are to be present, on the basis of national crisis management states which are comprised of protection (mitigating and preparing), responding, and recovering(rewarding).

  • PDF

Potential Impacts of Future Extreme Storm Events on Streamflow and Sediment in Soyang-dam Watershed (기후변화에 따른 미래 극한호우사상이 소양강댐 유역의 유량 및 유사량에 미치는 영향)

  • Han, Jeong Ho;Lee, Dong Jun;Kang, Boosik;Chung, Se Woong;Jang, Won Seok;Lim, Kyoung Jae;Kim, Jonggun
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.2
    • /
    • pp.160-169
    • /
    • 2017
  • The objective of this study are to analyze changes in future rainfall patterns in the Soyang-dam watershed according to the RCP 4.5 scenario of climate change. Second objective is to project peak flow and hourly sediment simulated for the future extreme rainfall events using the SWAT model. For these, accuracy of SWAT hourly simulation for the large scale watershed was evaluated in advance. The results of model calibration showed that simulated peak flow matched observation well with acceptable average relative error. The results of future rainfall pattern changes analysis indicated that extreme storm events will become more severe and frequent as climate change progresses. Especially, possibility of occurrence of large scale extreme storm events will be greater on the periods of 2030-2040 and 2050-2060. In addition, as shown in the SWAT hourly simulation for the future extreme storm events, more severe flood and turbid water can happen in the future compared with the most devastating storm event which occurred by the typhoon Ewiniar in 2006 year. Thus, countermeasures against future extreme storm event and turbid water are needed to cope with climate change.

Considerations on the development of Multi-Train Traffic Simulator for KyongBu-Line (경부선 혼합 열차운용 시뮬레이션 개발에 관한 고찰)

  • 김동희;오석문
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.77-85
    • /
    • 2000
  • The railway system is composed of large scale infrastructures and high-cost trains. For planning and analyzing this kind of complex system, simulation method can be used for efficient tool. In this research, we review basic simulation programming models and present a modeling for the elements of railway system such as rail-line infrastructure, train, time table and operational route. Additionally, some considerations on the development of multi-train traffic simulator for KyongBu-line are discussed.

  • PDF

Smart Concrete Structures with Optical Fiber Sensors

  • Kim, Ki-Soo
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.109-114
    • /
    • 1999
  • Recently the interest in the safety assessment of civil infrastructures has increased. As bridge structures become large-scale, it is necessary to monitor and maintain the safety of large bridges, which requires smart systems that can make long-term monitoring a reality . Civil engineers have applied monitoring systems to several bridges, such as the New Haeng-Ju Bridge and Riverside Urban Highway Bridge, but these applications have some problems with the sensors for long-term measurement, setup techniques for the bridge monitoring system and the assessment of measured data. In the present study, an optical fiber sensor smart system was tested and confirmed in laboratory tests on the concrete members. By Attaching optical fiber sensors to the structural parts of the Sung-San Bridge, the bridge load test was measured. These smart concrete structure systems can be applied to bridges and the load capacity of the bridge can assessed.

  • PDF

Autonomic Self Healing-Based Load Assessment for Load Division in OKKAM Backbone Cluster

  • Chaudhry, Junaid Ahsenali
    • Journal of Information Processing Systems
    • /
    • v.5 no.2
    • /
    • pp.69-76
    • /
    • 2009
  • Self healing systems are considered as cognation-enabled sub form of fault tolerance system. But our experiments that we report in this paper show that self healing systems can be used for performance optimization, configuration management, access control management and bunch of other functions. The exponential complexity that results from interaction between autonomic systems and users (software and human users) has hindered the deployment and user of intelligent systems for a while now. We show that if that exceptional complexity is converted into self-growing knowledge (policies in our case), can make up for initial development cost of building an intelligent system. In this paper, we report the application of AHSEN (Autonomic Healing-based Self management Engine) to in OKKAM Project infrastructure backbone cluster that mimics the web service based architecture of u-Zone gateway infrastructure. The 'blind' load division on per-request bases is not optimal for distributed and performance hungry infrastructure such as OKKAM. The approach adopted assesses the active threads on the virtual machine and does resource estimates for active processes. The availability of a certain server is represented through worker modules at load server. Our simulation results on the OKKAM infrastructure show that the self healing significantly improves the performance and clearly demarcates the logical ambiguities in contemporary designs of self healing infrastructures proposed for large scale computing infrastructures.

Impact of Bridge Construction on County Population in Georgia

  • Jeong, M. Myung;Kang, Mingon;Jung, Younghan E.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1017-1023
    • /
    • 2022
  • Past research shows that the construction of new infrastructure accelerates economic growth in the region by attracting more people and commodities. However, the previous studies only considered large-scale infrastructures such as sea-cross bridges and channel tunnels. There is a paucity of literature on regional infrastructure and its impact on socio-economic indicators. This paper explores the impact of new bridge construction on the human population, particularly focusing on regional bridges constructed during the 2000s in the state of Georgia. The human population at a county level was selected as a single socio-economic factor to be evaluated. A total of 124 cases were investigated as to whether the emergence of a new bridge affected the population change. The interrupted time series analysis was used to statistically examine the significance of population change due to the construction by treating each new bridge as an intervention event. The results show that, out of the 124 cases, the population of 67 cases significantly increased after the bridge construction, while the population of 57 cases was not affected by the construction at a significance level of 0.05. The 124 cases were also analyzed by route type, functional class, and traffic volume, but the results revealed, unlike large-scale infrastructure, that no clear evidence was found that a new bridge would bring an increase in the human population at a county level.

  • PDF

Scheduling based on Cache Utilization in a Cache Server Cluster for Wireless Internet (무선 인터넷을 위한 캐시 서버 클러스터 환경에서 캐시 이용률 기반의 스케줄링)

  • Kwak, Hu-Keun;Chung, Kyu-Sik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.9
    • /
    • pp.435-444
    • /
    • 2007
  • Caching web pages is an important part of web infrastructures. The effects of caching service are even more pronounced for wireless infrastructures due to their limited bandwidth. Medium to large-scale infrastructures deploy a cluster of servers to solve the scalability problem and hot spot problem inherent in caching. In this paper we present scheduling scheme based on cache utilization in a wireless internet proxy server cluster environment. The proposed method uses cache utilization for distributing evenly client requests to a cluster of cache servers and solving hot spot problem. We have implemented our approach and performed various experiments using publicly available traces. Experimental results on a cluster of 16 cache servers demonstrate that the proposed hashing method gives 45% to 114% Performance improvement over other widely used methods while addressing the hot spot problem.