
 Journal of Information Processing Systems, Vol.5, No.2, June 2009 69

Autonomic Self Healing-Based Load Assessment for Load Division in
OKKAM Backbone Cluster

Junaid Ahsenali Chaudhry*

Abstract: Self healing systems are considered as cognation-enabled sub form of fault tolerance
system. But our experiments that we report in this paper show that self healing systems can be used for
performance optimization, configuration management, access control management and bunch of other
functions. The exponential complexity that results from interaction between autonomic systems and
users (software and human users) has hindered the deployment and user of intelligent systems for a
while now. We show that if that exceptional complexity is converted into self-growing knowledge
(policies in our case), can make up for initial development cost of building an intelligent system. In
this paper, we report the application of AHSEN (Autonomic Healing-based Self management Engine)
to in OKKAM Project infrastructure backbone cluster that mimics the web service based architecture
of u-Zone gateway infrastructure. The ‘blind’ load division on per-request bases is not optimal for
distributed and performance hungry infrastructure such as OKKAM. The approach adopted assesses
the active threads on the virtual machine and does resource estimates for active processes. The
availability of a certain server is represented through worker modules at load server. Our simulation
results on the OKKAM infrastructure show that the self healing significantly improves the
performance and clearly demarcates the logical ambiguities in contemporary designs of self healing
infrastructures proposed for large scale computing infrastructures.

Keywords: Self Healing Systems, Load Estimation and Balancing, OKKAM, Entity Naming System

1. Introduction

As the complexity and size of networks increase so does

the costs of network management [1]. The preemptive
measures have done little to cut down on network
management cost. Hybrid networks cater with high levels
of Quality of Service (QoS), scalability, and dynamic
service delivery requirements. The amplified utilization of
hybrid networks i.e. ubiquitous-Zone based (u-Zone)
networks has raised the importance of human resources,
down-time, and user training costs. The u-Zone networks
are the fusion of the cluster of hybrid Mobile Ad-hoc
NETworks (MANETs) and high speed mesh network
backbones. They provide robust wireless connectivity to
heterogeneous wireless devices and take less setup time.
The clusters of hybrid networks feature heterogeneity,
mobility, dynamic topologies, limited physical security,
and limited survivability [2] and the mesh networks
provide the high speed feedback to the connected clusters.

Autonomic Computing provides a cheaper solution for
robust network management in u-Zone networks in the
form of self-management. Self Management is a tool
through which performance of the computer systems can

be optimized without human user intervention. In [14]
Turing et. al. suggests that autonomic systems have
exponential complexity which can hamper the appropriate
problem marking and also raises the software cost. So it is
critical to provide incremental, low cost and time efficient
solution along with minimize the maintenance cost of the
software.

An Entity Name System (ENS) – as it is currently under
development in the EUfunded project OKKAM – for
systematically supporting the re-use of entity identifiers.
The main purpose of the ENS is to provide unique and
uniform names for entities for the use in information
collections, so that the same name is used for an entity,
even when it is referenced in different contexts.

At this stage the ENS V2 architecture is envisaged to
consist of five main elements:

• an OKKAMcore Cluster, i.e. a set of computers running

OKKAMcore, together with a standard Load Balancer
that interfaces with the outside world.

• Lucene/Hadoop Cluster for distributed and load-
balanced index and entity profiles management. This
may be implemented using Solr/Hbase if experimentation
proves that it is better for future scalability and
reliability to use SolrBroker in the OKKAMstore.

• Security Server

DOI : 10.3745/JIPS.2009.5.2.069

Copyright ⓒ 2009 KIPS (ISSN 1976-913X)

Manuscript received 16 January, 2009; revised 16 February, 2009;
accepted 25 February, 2009.
Corresponding Author: Junaid Ahsenali Chaudhry
* University of Trento, Italy (chaudhry@disi.unitn.it)

70 Autonomic Self Healing-Based Load Assessment for Load Division in OKKAM Backbone Cluster

Fig. 1. Concrete Architecture of the Public OKKAM ENS

• storage and processing node suitable for analysis of log

data
• storage and processing node suitable for management of

entity evolution

Within this architecture, the instances of OKKAMstore

which are deployed as part of OKKAMcore will take care
of interaction with the Lucene/Hadoop (or Solr/HBase)
clusters transparently (i.e. any additionally deployed
instance of OKKAMcore will address the same clusters
automatically through the OKKAMstore component).

The focus of this scaled up and distributed ENS V2 will
be much more on operational performance metrics, and to
quantify the quality of service it will provide to its users,
particularly those of the three OKKAM entity-centric
applications in an authoring environment, organizational
knowledge management and entity-centric search engine.
In its use, it will also enable the ENS service performance
and quality expectations and needs of those users to be also
quantified. These will then inform the specification,
implementation, practical operation and roadmap to the
final large-scale ENS V3 to emerge from this project.

The authors in [17] target the self management in hybrid
environment through ‘divide and conquer’ approach by
using component-based programming. They propose to
rapidly divide the problem into sub domain and each
domain is than assigned ‘sub solutions’. The amalgamation
of all ‘sub solutions’ gives the final management solution
to the client.
Several network management solutions proposed in [4-7]

are confined strictly to their respective domains i.e. either
mesh network or MANETs. A self management architecture
is proposed in [30] for u-zone networks that uses component-
based plug-ins as self healing policies. Different executable
components are integrated together to form a healing policy.

A case study is presented in this paper as an application of
the AHSEN architecture. We use the delay time-based peak
load control scheme in order to preventing the transaction
trashing caused by enormous number of service request in
u-Zone-based hybrid networks. The ‘blind’ load division
on per-request bases is not optimal for distributed and
performance hungry infrastructure such as OKKAM. The
approach adopted assesses the active threads on the virtual
machine and does resource estimates for active processes.
The availability of a certain server is represented through
worker modules at load server. The worker pattern [8],
connecter-accepter model [16], reactive [15] and proactive
[26] approaches are effective in combination but not cost
effective in real life applications. Use of Peak Load
Control (PLC) mechanism manages the service requests at
gateway. Depending upon the load on the host gateway, the
service requests are routed to the peer gateways to
eliminate the inconsistency and redundancy at service level.
We show the simulation result for proving the stability of
performance. According to our experiment result, the
proposed delay time algorithm can stably control the heavy
overload after the saturation point and has significant effect
on the controlling peak load.

In section 2 we compare our scheme with some of the
contemporary solutions proposed. The proposed scheme
follows in section 3. The results are reported in section 4
and we conclude this paper in section 5.

2. Related Work

In this section we compare our research with the related

work. The Robust Self-configuring Embedded Systems
(RoSES) project [13] aims to target the management faults
using self configuration. It uses graceful degradation as
means to achieve dependable systems. In [14] the authors
propose that there are certain faults that can not be removed
through configured of the system, which means that
RoSES does not fulfill the definition of self management as
proposed in [18].

The HYWINMARC [3] uses cluster heads to manage
the clusters at local level but does not explain the criteria of
their selection. The specifications of Mobile Code
Execution Environment (MCEE) are absent. Moreover the
use of intelligent agents can gives similar results as
discussed above in the case of [16] and [17, 29]. To enforce
the management at local level, the participating nodes
should have some management liberty. However HYWINMARC
fails to answer the questions rose in the previous section.

Service Synthesizer on the Net (STONE) project [14]
explores new possibilities for users to accomplish their
tasks seamlessly and ubiquitously. The project focuses on

Junaid Ahsenali Chaudhry 71

the development of context-aware services in which
applications are able to change their functionality depending
on the dynamically changing user context. In STONE
project the service discovery is considered as one of the
general resources on internet.

We compare the architectures discussed in this section in
a table to observe their efficacy. In table 1 we compare the
AHSEN with the other architectures. The comparison
reveals that the entity profiling, functional classification of
self management entities at implementation level, and
assurance of the functional compliance is not provided in
the schemes proposed. Moreover the self monitoring at
node’s local level courtesy NFM not only gives a node its
self awareness but uses the shared medium to the minimum
also. In very dynamic hybrid networks these functionalities
go a long way in improving the performance of the self
management system.

3. Proposed Architecture

The Traffic Manager receives SOAP requests from many

devices within a cluster and redirects them to all the other
internal parts of SMF. Fig. 5 shows the structure of delay
time-based peak load control. The Acceptor thread of the
Traffic Manager receives a SOAP request (service request)
and then puts it into the Wait Queue. The Wait Queue
contains the latest context of the gateway load. If the
gateway is in saturated state, the service request is handled
by the self-aware sub module. The Fig. 6 is the pseudo
code of self-aware sub-module in WorkerManager’s Delay
Time Algorithm. Let a service request (SR1) arrives at the
gateway. At first the SR1 is checked if it contains the
comebacktime stamp (for fair scheduling). If the come-
backtime is ‘fair’ (that is the service request is returned
after the instructed time), it is forwarded to the Wait Queue
else it is accessed against the work load of the Worker
Manager. The Acceptor is updated about the latest status of
the Worker Manager. The Acceptor evaluates the intensity
of current workload (how long it will take to free
resources) and adds buff (buffer is the time to give some
extra room to gateway) to the time. The aggregate time is
assigned to SR1 and the service request is discarded.

When the system is ready to accept the service request,
the Traffic Manager gets a Worker Thread from a thread
pool and run it. The Worker Thread gets the delay time and
the over speed from the WorkerManager. The admission to
other internal parts SMF is controlled by the Worker
Thread that accepts the arriving requests only if the over
speed OS(ti+1) at the time ti+1 is below zero and the delay
time D(ti) at the time ti is below the baseline delay δ.
Otherwise the requests have to sleep for the delay time

Fig. 2. Structure of Delay-time based Peak Load Control

Scheme

calculated by the WorkerManager. After the Worker Thread
sleeps for the delay time, the Worker Thread redirects the
requests to the Root Cause Analyzer, the RCF Manager,
and the Scheduler. Finally, the Worker Thread adds the
number of processed transaction after finishing the related
transaction. After sleeping during interval time, the
WorkerManager gets the number of transactions processed
by all Worker Threads and the maximum transaction
processing speed configured by a system administrator.
And then, the WorkerManager calculates the TPMS
(Transaction per Milliseconds) by dividing the number of
transactions by the maximum transaction processing speed
and calculate the over speed OS(ti+1) that means the
difference of performance throughput at the time ti+1
between the TPMS and the maximum transaction processing
speed during the configured interval time. If the value of
the over speed is greater than zero, the system is considered
as an overload state. Accordingly, it is necessary to control
the overload state. On the contrary, if the value of the over
speed is zero or less than zero, it is not necessary to control
the transaction processing speed. For controlling the
overload state, this paper uses the delay time algorithm of
the WorkerManager. The Fig. 7 describes the formulas for
calculating the delay time. If the over speed OS(ti+1) is
greater than zero, the first formula of the Fig. 6 is used for
getting a new delay time D(ti+1) at the time ti+1. The
N(ti+1) means the number of active Worker Threads at the
time ti+1 and D(ti) means the delay time at the time ti. If
the D(ti) is zero, D(ti) must be set one. If the OS(ti+1) is
below zero and the delay time D(ti) at the time ti is greater
than the baseline delay δ. On the contrary, if the D(ti) is
below the baseline delay, D(ti+1) is directly set zero. In
other word, because the state of system is under load, the
delay time at the time ti+1 is not necessary.

Accordingly, the Worker Thread can have admission to

72 Autonomic Self Healing-Based Load Assessment for Load Division in OKKAM Backbone Cluster

0- Let a OKKAM service request SR1 arrives at
Acceptor

1- Check SRi.comebacktime
2- If (SRi.comebacktime=’fair’) // check the

virtual queue
a. Wait Queue Send SR1

3- Acceptor Send
current_context(worker_Manager_Status_Updat
e)

4- If (current_context!=‘overloaded’)
a. Wait queue Send SR1

5- else
a. While

(current_context=’overlaoded’)
i. delaytime= Calculate

(intensity_of(current_cont
ext)+buff

ii. Set SR1.comebacktime
delaytime

iii. Dismount SR1
6- While run_flag equals “true” do
7- get interval time for checking load
8- sleep during the interval time
9- get the number of transactions processed

during the interval time
10- get the configured maximum speed
11- TPMS := number of transactions / interval

time
12- over speed := TPMS – the configured maximum

speed
13- If over speed >0 then

a. get the previous delay time
b. if previous delay time = 0

i. previous delay time := 1
c. get the number of active worker

thread
d. new delay time:= over speed /

number of active worker * previous
delay time

14- else
a. get current delay
b. if current delay > δ

i. new delay time := current
delay * β

c. else
i. new delay time := 0

d. end if
15- end if
16- end while

Fig. 3. The Pseudo Code for Self-Aware Module and
WorkerManager's delay time Algorithm

1

1
1

1 1

1

() ()
, (()) 0

()

() : ()* , ((()) 0 (())) ,

0, ((()) 0 (()))

i i
i

i

i i i i

i i

OS t D t
if OS t

N t

D t D t if OS t D t

if OS t D t

β δ

δ

+
+

+

+ +

+

∗⎧ >⎪
⎪
⎪
⎪= ≤ ∩ >⎨
⎪
⎪
⎪ ≤ ∩ ≤
⎪
⎩

Fig. 4. A Mathematical Model for Delay time Calculation.

other internal parts SMF. The baseline delay is used for
preventing repetitive generation of the over speed
generated by suddenly dropping the next delay time in
previous heavy load state. When the system state is
continuously in state of heavy load for a short period of
time, it tends to regenerate the over speed to suddenly
increment the delay time at the time ti and then suddenly
decrement the delay time zero at the time ti+1. In other
words, the baseline delay decides whether next delay time
is directly set zero or not.

The β percent of the second formula of the Fig. 7
decides the slope of a downward curve. However, if the
delay time at the time ti is lower than the baseline delay.
The new delay time at the time ti+1 is set zero.
Accordingly, when a system state becomes the heavy
overload at the time ti, the gradual decrement by β percent
prevents the generation of repetitive over speed caused by
abrupt decrement of the next delay time.

Once the service request is received by the worker
thread the analysis of the cause of anomaly starts. As
proposed in [18] the faults can be single root cause based
or multiple root cause based. We consider this scenario and
classify a Root Cause Analyzer that checks the root failure
cause through the algorithms proposed in [19]. After
identifying the root causes, the Root Cause Fragmentation
Manager (REF Manager) looks up for the candidate plug-
ins as solution. The RFC manager also delegates the
candidate plug-ins as possible replacement of the most
appropriate. The scheduler schedules the service delivery
mechanism as proposed in [20]. The processed fault
signatures are stored in signature repository for future
utilization. Let, N is concurrent service requests at the
server at full time. This means that as soon as one thread
finishes its execution, a new one will take its place. This
assumption is made in order to insure that we analyze the
worst case scenario of performance time with N service
requests in execution queue. This means that the execution
of a service request is done from its first until its last
quantum (subparts of a service request i.e. analyze,
evaluate, categorize etc) in the presence of other N-1
service requests.

k index variable spanning the service requests:
1<=k<=N

Sj CPU quantum length for server j (isolated
represents that value for a specific isolated server)

Ikj the number of cycles the kth service request needs to
complete on server j.

ik_isolated represents that value for a specific isolated
server

As soon as the execution queue is in a stable state, the
time needed for the kth service request to complete in the
presence of other N-1 service requests is

 (1)

The this product represents in fact the execution

time of the kth service request in isolation conditions
(executed alone, without any other concurrent thread).

This product is
evaluated on an out of core server and is used as the base
value for the load prediction. These two formulas are rather
trivial and are standard results of queuing system. They

Junaid Ahsenali Chaudhry 73

mean that the prediction time for the execution depends on
the total amount of connected service requests on the server.

Now a transaction is completed client request, and
considering that the kth client permanently issues the same
request to the server, then the number of transactions (Tx)
that may be completed for k clients in interval T is

 (2)

from 1,

 (3)

where is coefficient of CPU utilization. We can write 3 as,

 (4)

From equation 4, it means that the execution time for a

transaction depends upon the number of service requests in
active queue. So we can calculate the estimated time a CPU
needs in order to get free from the requests in active queue.

Let, there are N number of service requests present in
the active queue. In time tk1, the service request sk1 is
being executed, the KN-1 service requests will reside in the
memory.

Msk memory size kth service request. Msk >=1
Bk branch statements in Msk in kth service request.

Bk >=0
Ttpbk the Time needed per transaction.

 (5)

where is coefficient of CPU utilization.

Let, u(t) denote load of service request. We can
normalize the service request as

 (6)

Where and denotes the minimum and

maximum load of the service request. According to equation
6, different service request traces and be compared with
each other, while the impact of their internal analysis is
eliminated. If we define as the kth threshold for

 then a function is defined by

 (7)

Generally . Assuming . From 6

and 7 we can say

 (8)

Or we can say,

 (9)

where is coefficient of CPU utilization.
So combining 4, 5, 9 we get,

 (10)

(11)

Now we know that the service request has exponential

distribution and the arrival rate has poison distribution. So
we can say that the RTD (Round Trip Delay)

 (12)

Where is the propagation delay from server to the

bottleneck link buffer that is the gateway buffer, and is
the propagation delay over the return path from the
bottleneck link buffer to the client (the service request
generator).

 (13)

And efficiency is calculated as

 (14)

In this expression, the range for S is and the
range for is which is less then

 for HYWINMARC [3] based, and
 for RoSeS [13] based solutions.

4. Results

In order to prove performance stability of the self-aware

PLC-based autonomic self-healing system, we simulated

74 Autonomic Self Healing-Based Load Assessment for Load Division in OKKAM Backbone Cluster

the self-aware delay time algorithm of the WorkerManager.
As for load generation, the LoadRunner 8.0 tool is
employed. The delay time and over speed are used as a
metric for simulation analysis. The maximum speed, δ and
β for delay time algorithm are configured 388, 100ms, and
0.75 respectively. Fig. 8 shows the result of simulation for
describing the relationship between the over-speed and the
delay time after the saturation point.

These experimental results prove that the proposed delay
time algorithm of the WorkerManager has an effect on
controlling the over-speed. As the number of concurrent
users is more than 220 users, the over-speed frequently
takes place. Whenever the over-speed happens, each
Worker Thread sleeps for the delay time calculated by the
WorkerManager. As the higher over-speed takes place,
each Worker Thread sleeps for the more time so that the
over speed steeply goes down. Although the over speed
steeply goes down, the delay time does not steeply goes
down due to the baseline delay value δ. As the baseline
delay value is set 100 ms in this experiment, the delay time
gradually goes down until the 100 ms. As soon as the delay
time passes 100 ms, the next delay time is directly set zero.
The result of simulation in Fig. 9.a shows that the over-
speed does not happen until zero delay time due to the
slope of a downward curve. However, As soon as the delay
time passes zero, the over speed again occurs and the next
delay time controls the over speed.

Fig. 5. Simulation Results showing the effects on

performance.

5. Conclusion

In this paper we identify the role of self healing which is

mostly misunderstood among the modern day systems.
This misconception creates many logical problems
especially in fault mapping, functional classification and
categorization. Self healing systems are considered as
cognation-enabled sub form of fault tolerance system. But
our experiments that we report in this paper show that self

healing systems can be used for performance optimization,
configuration management, access control management
and bunch of other functions. The exponential complexity
that results from interaction between autonomic systems
and users (software and human users) has hindered the
deployment and user of intelligent systems for a while now.
We show that if that exceptional complexity is converted
into self-growing knowledge (policies in our case), can
make up for initial development cost of building an
intelligent system. In this paper, we report the application
of AHSEN (Autonomic Healing-based Self management
Engine) to in OKKAM Project infrastructure backbone
cluster that mimics the web service based architecture of u-
Zone gateway infrastructure. The ‘blind’ load division on
per-request bases is not optimal for distributed and
performance hungry infrastructure such as OKKAM. The
approach adopted assesses the active threads on the virtual
machine and does resource estimates for active processes.
The availability of a certain server is represented through
worker modules at load server. Our simulation results on
the OKKAM infrastructure show that the self healing
significantly improves the performance and clearly demarcates
the logical ambiguities in contemporary designs of self
healing infrastructures proposed for large scale computing
infrastructures.

References

[1] Firetide www.firedide.com.
[2] Doufexi, A. Tameh, E. Nix, A. Armour, S. Molina, A.

“Hotspot wireless LANs to enhance the performance
of 3G and beyond cellular networks”, Communications
Magazine, IEEE, Publication Date: July, 2003, Vol.41,
Issue7,On pp.58-65.

[3] Shafique Ahmad Chaudhry, Ali Hammad Akbar, Ki-
Hyung Kim, Suk-Kyo Hong, Won-Sik Yoon,”
HYWINMARC: An Autonomic Management Architecture
for Hybrid Wireless Networks” Network Centric
Ubiquitous Systems (NCUS 2006).

[4] Burke Richard, 2004, "Network Management. Concepts
and Practice: A Hands-on Approach", Pearson
Education, Inc.

[5] Minseok Oh. Network management agent allocation
scheme in mesh networks Communications Letters,
IEEE Vol.7, Issue12, Dec., 2003, pp.601-603

[6] Kishi Y. Tabata, K.; Kitahara, T.; Imagawa, Y.; Idoue,
A.; Nomoto, S.; Implementation of the integrated
network and link control functions for multi-hop
mesh networks in broadband fixed wireless access
systems Radio and Wireless Conference, 2004 IEEE
19-22 Sept., 2004, pp.43-46.

Junaid Ahsenali Chaudhry 75

[7] S. Yong-Lin, G. DeYuan, P. Jin, S. PuBing, A mobile
agent and policy-based network management architecture,
Proceedings, Fifth International Conference on
Computational Intelligence and Multimedia Applications
ICCIMA 2003, 27-30 Sept., 2003, pp.177-181.

[8] Robert Steinke, Micah Clark, Elihu Mcmahon, “A
new pattern for flexible worker threads with in-place
consumption message queues”, Vol.39, Issue2, (April
2005) table of contents pp.71-73 Year of Publication:
2005.

[9] Junaid Ahsenali Chaudhry, and Seung-Kyu Park,
Some Enabling Technologies for Ubiquitous Systems,
Journal of computer Science 2 (8): 627-633, 2006.

[10] S. Garfinkel, “PGP: Pretty Good Privacy,” O’Reily &
Associates Inc., 1995.

[11] Junaid Ahsenali Chaudhry, and Seungkyu Park, "Using
Artificial Immune Systems for Self Healing in Hybrid
Networks", in Encyclopedia of Multimedia Technology
and Networking, Published by Idea Group Inc., 2006.
[To appear in 2008-09]

[12] Ma J., Zhao Q., Chaudhary V., Cheng J., Yang L. T.,
Huang H., and Jin Q.,Ubisafe Computing: Vision and
Challenges (I),Springer LNCS Vol.4158, Proc. of
ATC-06, 2006.

[13] Shelton, C. & Koopman, P., "Improving System
Dependability with Alternative Functionality," DSN04,
June, 2004.

[14] Morikawa, H. (2004). The design and implementation
of context-aware services. Proceedings of IEEE saint-
w 2004, 293-298.

[15] D. C. Schmidt, “Reactor: An Object Behavioral Pattern
for Concurrent Event Demultiplexing and Event
Handler Dispatching,” in Pattern Languages of Program
Design (J. O. Coplien and D. C. Schmidt, eds.),
pp.529-545, Reading, MA: Addison-Wesley, 1995

[16] D. C. Schmidt, “Acceptor and Connector: Design
Patterns for Initializing Communication Services,” in
Pattern Languages of Program Design (R. Martin, F.
Buschmann, and D. Riehle, eds.), Reading, MA:
Addison-Wesley, 1997.

[17] Junaid Ahsenali Chaudhry, Seungkyu Park, "A Novel
Autonomic Rapid Application Composition Scheme
for Ubiquitous Systems", The 3rd International Conference
on Autonomic and Trusted Computing (ATC-06),
2006.

[18] Wolfgang Trumler, Jan Petzold, Faruk Bagci, Theo
Ungerer, AMUN – Autonomic Middleware for
Ubiquitious eNvironments Applied to the Smart
Doorplate Project, International Conference on
Autonomic Computing (ICAC-04), New York, NY,
May 17-18, 2004.

[19] Gao, J.; Kar, G.; Kermani, P.; Approaches to building

self healing systems using dependency analysis,
Network Operations and Management Symposium,
2004. NOMS 2004. IEEE/IFIP Vol.1, 19-23 April
2004 pp.119-132 Vol.1.

[20] Junaid Chaudhry, and Seungkyu Park, "On Seamless
Service Delivery", The 2nd International Conference
on Natural Computation (ICNC'06) and the 3rd
International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD'06) 2006.

[21] Ilgun, K.; Kemmerer, R.A.; Porras, P.A., "State
transition analysis: a rule-based intrusion detection
approach," Software Engineering, IEEE Transactions
on , Vol.21, No.3, pp.181-199, Mar., 1995.

[22] T. F. Lunt, “Real-time intrusion detection,” in Proc.
COMPCON, San Francisco, CA, Feb., 1989.

[23] T. F. Lunt et al., “A real-time intrusion detection
expert system,” SRI CSL Tech. Rep. SRI-CSL-90-05,
June, 1990.

[24] T. F. Lunt et al., “A real-time intrusion detection
expert system (IDES),” Final Tech. Rep., Comput. Sci.
Laboratory, SRI Int., Menlo Park, CA, Feb., 1992.

[25] Radosavac, S.; Seamon, K.; Baras, J.S., "Short Paper:
bufSTAT - a tool for early detection and classification
of buffer overflow attacks," Security and Privacy for
Emerging Areas in Communications Networks, 2005.
SecureComm 2005. First International Conference on ,
Vol., No., pp.231-233, 05-09 Sept., 2005.

[26] J. Hu, I. Pyarali, and D. C. Schmidt, “Applying the
Proactor Pattern to High-Performance Web Servers,”
in Proceedings of the 10th International Conference
on Parallel and Distributed Computing and Systems,
IASTED, Oct. 1998.

[27] P. J. Denning: Thrashing: Its Causes and Prevention.
Proc. AFlPS FJCC 33, 1968, pp.915-922

[28] Turing, Alan M., On Computable Numbers, with an
Application to the Entscheidungs Problem. Proceedings
of the London Mathematical Society, 2 (42):230-265,
1936.

[29] Hideyuki Takahashi, Takuo Suganuma, Norio Shiratori:
AMUSE: An Agent-based Middleware for Context-
aware Ubiquitous Services. ICPADS (1) 2005: 743-
749.

76 Autonomic Self Healing-Based Load Assessment for Load Division in OKKAM Backbone Cluster

Junaid Ahsenali Chaudhry, and Seungkyu Park, "AHSEN -
- Autonomic Healing-based Self management Engine for
Network management in hybrid networks", The Second
International Conference on Grid and Pervasive
Computing (GPC07), 2007.

Junaid Ahsenali Chaudhry
He received a Ph.D. degree in Computer
Science from Ajou Univ. in 2009. He
has been a post doctoral research fellow
at University of Trento since 2008. His
research interests are in the area of
Autonomic Computing, Self Healing,

Self Growing and Learning Systems, Artificial Intelligence,
Distributed Processing and Ubiquitous Networks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

