• 제목/요약/키워드: large-scale dynamic systems

검색결과 169건 처리시간 0.028초

대규모 시스템의 실시간 컴퓨터 제어를 위한 전문가 시스템 (An Expert System for the Real-Time Computer Control of the Large-Scale System)

  • 고윤석
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권6호
    • /
    • pp.781-788
    • /
    • 1999
  • In this paper, an expert system is proposed, which can be effectively applied to the large-scale systems with the diversity time constraints, the objectives and the unfixed system structure. The inference scheme of the expert system have the integrated structure composed of the intuitive inference module and logical inference module in order to support effectively the operating constraints of system. The intuitive inference module is designed using the pattern matching or pattern recognition method in order to search a same or similar pattern under the fixed system structure. On the other hand, the logical inference module is designed as the structure with the multiple inference mode based on the heuristic search method in order to determine the optimal or near optimal control strategies satisfing the time constraints for system events under the unfixed system structure, and in order to use as knowledge generator. Here, inference mode consists of the best-first, the local-minimum tree, the breadth-iterative, the limited search width/time method. Finally, the application results for large-scale distribution SCADA system proves that the inference scheme of the expert system is very effective for the large-scale system. The expert system is implemented in C language for the dynamic mamory allocation method, database interface, compatability.

  • PDF

컴퓨터 통합 생산을 위한 통신망의 성능 관리 (Performance Management of Communication Networks for Computer Intergrated Manufacturing)

  • Lee, S.
    • 한국정밀공학회지
    • /
    • 제11권4호
    • /
    • pp.126-137
    • /
    • 1994
  • Performance management of computer networks is intended to improve a given network performance in order for more efficient information exchange between subsystems of an integrated large-scale system. Importance of perfomance management is growing as many functions of the large- scale system depend on the quality of communication services provided by the network. The role of performance management is to manipulate the adjustable protocol parameters on line so that the network can adapt itself to a dynamic environment. This can be divided into two subtasks : performance evaluation to find how changes in protocol parameters affect the network performance and decision making to determine the magnitude and direction of parameter adjustment. This paper is the first part of the two papers focusing on conceptual design, development, and evaluation of performance management for token bus networks. This paper specifically deals with the task of performance evaluation which utilizes the principle of perturbation analysis of discrete event dynamic systems. The developed algorithm can estimate the network performance under a perturbed protocol parameter setting from observations of the network operations under a nominal parameter setting.

  • PDF

무베어링 헬리콥터 로터 시스템의 동특성 해석 (Dynamic Characteristic Analyses of a Bearingless Helicopter Rotor Systems)

  • 기영중;윤철용;김승호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.52-56
    • /
    • 2011
  • Recently, KARI(Korea Aerospace Research Institute) has been developing a modern 11.5m diameter four bladed bearingless main rotor system, and this rotor system can be used for 7,000lb class helicopter. Flexbeam and torque tube can be considered as the key structural components, and large elastic twist of flexbeam induced by pitch control motion of torque tube can influence the nonlinear aeroelastic behavior. In this paper, the dynamic characteristic analysis results of bearingless rotor system were presented. In order to construct a input model and validate the analysis procedures, calculated results using the comprehensive helicopter analysis program CAMRAD II were compared with the measured natural frequencies and lag damping data from small-scale wind tunnel test. Next, the analysis model was extended to a full-scale model, and the dynamic analysis results were presented.

  • PDF

Local dynamic buckling of FPSO steel catenary riser by coupled time-domain simulations

  • Eom, T.S.;Kim, M.H.;Bae, Y.H.;Cifuentes, C.
    • Ocean Systems Engineering
    • /
    • 제4권3호
    • /
    • pp.215-241
    • /
    • 2014
  • Steel catenary riser (SCR) is a popular/economical solution for the oil/gas production in deep and ultra-deep water. The behavioral characteristics of SCR have a high correlation with the motion of floating production facility at its survival and operational environments. When large motions of surface floaters occur, such as FPSO in 100-yr storm case, they can cause unacceptable negative tension on SCR near TDZ (touch down zone) and the corresponding elastic deflection can be large due to local dynamic buckling. The generation, propagation, and decay of the elastic wave are also affected by SCR and seabed soil interaction effects. The temporary local dynamic buckling vanishes with the recovery of tension on SCR with the upheaval motion of surface floater. Unlike larger-scale, an-order-of-magnitude longer period global buckling driven by heat and pressure variations in subsea pipelines, the sub-critical local dynamic buckling of SCR is motion-driven and short cycled, which, however, can lead to permanent structural damage when the resulting stress is greatly amplified beyond the elastic limit. The phenomenon is extensively investigated in this paper by using the vessel-mooring-riser coupled dynamic analysis program. It is found that the moment of large downward heave motion at the farthest-horizontal-offset position is the most dangerous for the local dynamic buckling.

Experimental Performance Comparison of Dynamic Data Race Detection Techniques

  • Yu, Misun;Park, Seung-Min;Chun, Ingeol;Bae, Doo-Hwan
    • ETRI Journal
    • /
    • 제39권1호
    • /
    • pp.124-134
    • /
    • 2017
  • Data races are one of the most difficult types of bugs in concurrent multithreaded systems. It requires significant time and cost to accurately detect bugs in complex large-scale programs. Although many race detection techniques have been proposed by various researchers, none of them are effective in all aspects. In this paper, we compare the performance of five recent dynamic race detection techniques: FastTrack, Acculock, Multilock-HB, SimpleLock+, and causally precedes (CP) detection. We experimentally demonstrate the strengths and weaknesses of these dynamic race detection techniques in terms of their detection capability, running time, and runtime overhead using 20 benchmark programs with different characteristics. The comparison results show that the detection capability of CP detection does not differ from that of FastTrack, and that SimpleLock+ generates the lowest overhead among the hybrid detection techniques (Acculock, SimpleLock+, and Multilock-HB) for all benchmark programs. SimpleLock+ is 1.2 times slower than FastTrack on average, but misses one true data race reported from Mutilock-HB on the large-scale benchmark programs.

Particle relaxation method for structural parameters identification based on Monte Carlo Filter

  • Sato, Tadanobu;Tanaka, Youhei
    • Smart Structures and Systems
    • /
    • 제11권1호
    • /
    • pp.53-67
    • /
    • 2013
  • In this paper we apply Monte Carlo Filter to identifying dynamic parameters of structural systems and improve the efficiency of this algorithm. The algorithms using Monte Carlo Filter so far has not been practical to apply to structural identification for large scale structural systems because computation time increases exponentially as the degrees of freedom of the system increase. To overcome this problem, we developed a method being able to reduce number of particles which express possible structural response state vector. In MCF there are two steps which are the prediction and filtering processes. The idea is very simple. The prediction process remains intact but the filtering process is conducted at each node of structural system in the proposed method. We named this algorithm as relaxation Monte Carlo Filter (RMCF) and demonstrate its efficiency to identify large degree of freedom systems. Moreover to increase searching field and speed up convergence time of structural parameters we proposed an algorithm combining the Genetic Algorithm with RMCF and named GARMCF. Using shaking table test data of a model structure we also demonstrate the efficiency of proposed algorithm.

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • 제14권6호
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

Key-based dynamic S-Box approach for PRESENT lightweight block cipher

  • Yogaraja CA;Sheela Shobana Rani K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권12호
    • /
    • pp.3398-3415
    • /
    • 2023
  • Internet-of-Things (IoT) is an emerging technology that interconnects millions of small devices to enable communication between the devices. It is heavily deployed across small scale to large scale industries because of its wide range of applications. These devices are very capable of transferring data over the internet including critical data in few applications. Such data is exposed to various security threats and thereby raises privacy-related concerns. Even devices can be compromised by the attacker. Modern cryptographic algorithms running on traditional machines provide authentication, confidentiality, integrity, and non-repudiation in an easy manner. IoT devices have numerous constraints related to memory, storage, processors, operating systems and power. Researchers have proposed several hardware and software implementations for addressing security attacks in lightweight encryption mechanism. Several works have made on lightweight block ciphers for improving the confidentiality by means of providing security level against cryptanalysis techniques. With the advances in the cipher breaking techniques, it is important to increase the security level to much higher. This paper, focuses on securing the critical data that is being transmitted over the internet by PRESENT using key-based dynamic S-Box. Security analysis of the proposed algorithm against other lightweight block cipher shows a significant improvement against linear and differential attacks, biclique attack and avalanche effect. A novel key-based dynamic S-Box approach for PRESENT strongly withstands cryptanalytic attacks in the IoT Network.

Introduction to Molecular Dynamic Simulation Employing a Reactive Force Field (ReaxFF) for Simulating Chemical Reactions of SiHx Radicals on Si Surfaces

  • 한상수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.93-93
    • /
    • 2010
  • In this talk, I will introduce a reactive force field (ReaxFF) molecular dynamics (MD) simulation. In contrast to common MD simulations with empirical FFs, we can predict chemical reactions (bond breaking and formation) in large scale systems with the ReaxFF simulation where all of the ReaxFF parameters are from quantum mechanical calculations such as density functional theory to provide high accuracy. Accordingly, the ReaxFF simulation provides both accuracy of quantum mechanical calculations and description of large scale systems of atomistic simulations at the same time. Here, I will first discuss a theory in the ReaxFF including the differences from other empirical FFs, and then show several applications for studying chemical reactions of SiHx radicals on Si surfaces, which is an important issue in Si process.

  • PDF

An Improved Dynamic Programming Approach to Economic Power Dispatch with Generator Constraints and Transmission Losses

  • Balamurugan, R.;Subramanian, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권3호
    • /
    • pp.320-330
    • /
    • 2008
  • This paper presents an improved dynamic programming (IDP) approach to solve the economic power dispatch problem including transmission losses in power systems. A detailed mathematical derivation of recursive dynamic programming approach for the economic power dispatch problem with transmission losses is presented. The transmission losses are augmented with the objective function using price factor. The generalized expression for optimal scheduling of thermal generating units derived in this article can be implemented for the solution of the economic power dispatch problem of a large-scale system. Six-unit, fifteen-unit, and forty-unit sample systems with non-linear characteristics of the generator, such as ramp-rate limits and prohibited operating zones are considered to illustrate the effectiveness of the proposed method. The proposed method results have been compared with the results of genetic algorithm and particle swarm optimization methods reported in the literature. Test results show that the proposed IDP approach can obtain a higher quality solution with better performance.