• Title/Summary/Keyword: large-scale digital map

Search Result 79, Processing Time 0.029 seconds

A Study on the Specification of Digital Map Ver. 2.0 Generalization (수치지도 Ver. 2.0 일반화스펙에 관한 연구)

  • Park Kyeong-Sik;Jung Sung-Heuk;Choi Seok-Keun;Lee Jae-Kee
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.405-410
    • /
    • 2006
  • The digital map version 2.0 is national base map which is used for frame work data, paper map making as well as geographic information system. National Geographic Institude has been research to make small scale digital map by using large scale digital map. NGI made from 25 1/5,000 digital maps to one 1/25,000 digital map ver 2.0 with map generalization system in 2003. However, they could not make 1/10,000 and l/50,000 digital map version 2.0 because of There is no portrayal on the scale 1/10,000 and 1/50,000 digital map in the existing regulations. therefore. We create the specification of the digital map on scale in order to make small scale digital map version 2.0 such as 1/10,000 and 1/50,000 scale.

  • PDF

Small Scale Digital Mapping using Airborne Digital Camera Image Map (디지털 항공영상의 도화성과를 이용한 소축척 수치지도 제작)

  • Choi, Seok-Keun;Oh, Eu-Gene
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.141-147
    • /
    • 2011
  • This study analyzed the issues and its usefulness of drawing small-scale digital map by using the large-scale digital map which was producted with high-resolution digital aerial photograph which are commonly photographed in recent years. To this end, correlation analysis of the feature categories on the digital map was conducted, and this map was processed by inputting data, organizing, deleting, editing, and supervising feature categories according to the generalization process. As a result, 18 unnecessary feature codes were deleted, and the accuracy of 1/5,000 for the digital map was met. Although the size of the data and the number of feature categories increased, this was proven to be shown due to the excellent description of the digital aerial photograph. Accordingly, it was shown that drawing a small-scale digital map with the large-scale digital map by digital aerial photograph provided excellent description and high-quality information for digital map.

A Study on the Consecutive Renewal of Road and Building Information in the Multi-scale Digital Maps (다축척 수치지도의 도로 및 건물정보 일괄갱신 연구)

  • Park, Kyeong-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.1
    • /
    • pp.21-28
    • /
    • 2011
  • In the existing digital map of the Ver.1.0, it is impossible to make a small scale digital map, which is under the 1/5000 scale map, by using the 1/1000 digital map which is the most large scale one. Because of this reason, the existing digital maps are produced into a 1/1000 and a 1/5000 map by means of two different scale aerial photos. The next generation digital map should be successively related to a small scale digital map based on the most large scale digital one. This is so important from the aspects of data share and the consecutive renewal. Ever since the development of the digital map of the Ver. 2.0, the possibility of making a multi-scale consecutive digital map has been presented and the related research has been done again. The most basic thing in the multi-scale digital maps is to decide the criteria of the generalization between the two scales. In this study, I try to formulate the criteria of the generalization required to make the 1/5000 digital map by using the 111000 digital one. In addition, I by to explore the application possibility of the consecutive renewal by carrying out auto-generalization.

A Study on Large Scale Digital Mapping Using High Resolution Satellite Images (고해상도 위성영상을 이응한 대축척 수치지도 제작에 관한 연구)

  • 윤홍식;조재명;조정호
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.321-326
    • /
    • 2003
  • The subjects of this study are to examine and to apply the methods of making 1:5,000 scale maps using 1m resolution stereo images of IKONOS for the Munsan area of Paju-city where aerial photo surveying cannot possible because of security conditions. GCP(Ground Control Point) were acquired from GPS surveying and were to perform geometric corrections on images. Digital Map used IKONOS stereo images and it worked from the digital analytical stereoplotter. From field investigation, RMSE errors of the plane and vertical positions are estimated to 1.706m and 1.231m, respectively. The plane accuracy is better than an accuracy required by NGIS (national GIS) programs. Local information from field investigation was added and the resulting maps should be good as digital map under the scale of 1/5,000.

  • PDF

A Study on the Data Reduction Techniques for Small Scale Map Production (소축적 지도제작을 위한 데이터 감축 기법에 관한 연구)

  • 곽강율;이호남;김명배
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.1
    • /
    • pp.77-83
    • /
    • 1995
  • This paper is concentrated on map generalization in digital environment for automated multi-scale map pro-duction using conventional hardcopy maps. Line generalization is urgently required process to prepare small scale digital map database when large scale map databases are available. This paper outlines a new approach to the line generalization when preparing small scale map on the basis of existing large scale distal map. Line generalizations are conducted based on zero-crossing algorithm using six sheets of 115,000 scale YEOSU area which produced by National Geographic Institute. The results are compared to Douglas-Peucker algorithm and manual method. The study gives full details of the data reduction rates and alternatives based on the proposed algorithm.

  • PDF

Evaluation of Possibility of Large-scale Digital Map through Precision Sensor Modeling of UAV (무인항공기 정밀 센서모델링을 통한 대축척 수치도화 가능성 평가)

  • Lim, Pyung-chae;Kim, Han-gyeol;Park, Jimin;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1393-1405
    • /
    • 2020
  • UAV (Unmanned Aerial Vehicle) can acquire high-resolution images due to low-altitude flight, and it can be photographed at any time. Therefore, the UAV images can be updated at any time in map production. Due to these advantages, studies on the possibility of producing large-scale digital maps using UAV images are actively being conducted. Precise digital maps can be used as base data for digital twins or smart cites. For producing a precise digital map, precise sensor modeling using GCPs (Ground Control Points) must be preceded. In this study, geometric models of UAV images were established through a precision sensor modeling algorithm developed in house. Then, a digital map by stereo plotting was produced to evaluate the possibility of large-scale digital map. For this study, images and GCPs were acquired for Ganseok-dong, Incheon and Yeouido, Seoul. As a result of precision sensor modeling accuracy analysis, high accuracy was confirmed within 3 pixels of the average error of the checkpoints and 4 pixels of the RMSE was confirmed for the two study regions. As a result of the mapping accuracy analysis, it satisfied the 1:1,000 mapping accuracy announced by the NGII (National Geographic information Institute). Therefore, the precision sensor modeling technology suggested the possibility of producing a 1:1,000 large-scale digital map by UAV images.

The Study on Simplification in Digital Map Generalization (수치지도 일반화에 있어서 단순화에 관한 연구)

  • 최병길
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.2
    • /
    • pp.199-208
    • /
    • 2001
  • The digital map in Korea has been producted and utilized independently according to scales such as 1:1,000, 1:5,000, and 1:25,000. Therefore, whenever we need to obtain the spatial data of other scales, we have to product the digital maps over and over again which it is time-consuming and ineconomic. To solve these problems, it has been accomplished many researches on map generalization to make digital maps in small scale from the master data of large scale. This paper aims to analyze the conversion characteristics of the large scale to the small scale by simplification of map generalization. For this purpose, it is proposed the algorithm for the simplification process of digital map and it is investigated the simplification characteristic of digital map through the experiment on the conversion of 1:5,000 scale into 1:25.000 scale. The results show that Area-Preservation algorithm indicates the good agreement with the original data in terms of the area and features of building layer compared to Douglas-Peucker algorithm and Reumann-Witkam algorithm.

  • PDF

Utilization of High-precision Spatial Information Based on Large-scale Digital Map (대축척 수치지도 기반의 정밀 공간정보 활용방안)

  • Park, Hong Gi;Park, Hyun Mi;Park, Jin Yi;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.1
    • /
    • pp.49-54
    • /
    • 2014
  • A digital map of 1/5,000 scale provides basic information to be utilized in various businesses, such as in land management, urban information system of a local government, navigation of private sectors and others. 1/5,000 digital map, which contains information of the entire land of South Korea, is performed as a national fundamental map, however, comparing to 1,000 digital map, it has some difficulties in terms of positional accuracy and attribute data for applying in urban areas. Also, since the paradigm of spatial information services has been changed, more accurate positional information and rich attribute information are required for the government businesses and private map services. Particularly, demands for the high precision spatial information based on large-scale digital map is increasing in facility managements due to rapid changes in urban areas and various spatial analyses. For those reasons, this study proposes how to apply and use precise spatial information based on 1/1,000 digital. Firstly, an analysis of legal system related to large-scale digital map and spatial information is conducted in the research. Afterwards, the ways are suggested to improve systematical utilizations of 1/1,000 digital map. We also define existing applications of spatial information in public and private sector, and recommend methodology that can be utilized high precision spatial information.

Estimating the Application Possibility of High-resolution Satellite Image for Update and Revision of Digital Map (수치지도의 수정 및 갱신을 위한 고해상도 위성영상의 적용 가능성 평가)

  • 강준묵;이철희;이형석
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.3
    • /
    • pp.313-321
    • /
    • 2002
  • Supplying high-resolution satellite image, we take much interest in the update and the revision of digital map and thematic map based on the satellite image. This study presented the possibility of the update and the revision to the existing digital map on a scale of l/5,000 and 1/25,000 to take advantage of the IKONOS satellite image. We performed geometric correction to make use of the ground control points of the existing digital map in IKONOS mono-image and created ortho-image by extracting digital elevation model from three dimensional contour data and altitude on the existing digital map. We revised changed features in the method of screen digitizing by overlapping orthorectified satellite image and existing digital map and flawed features of the unchanged area on the satellite images for positional accuracy analysis. As a result, rectification error is calculated at $\pm$3.35m by RMSE. There is a good possibility of update of digital map under the scale of 1/10,000. It is possible to the update of the large scale digital map over the scale of l/5,000, as if we used the method of stereo image and ground control point surveying.