• Title/Summary/Keyword: large-capacity induction motor

Search Result 23, Processing Time 0.025 seconds

Characteristic of Current and Temperature according to Normal and Abnormal Operations at Induction Motor of 2.2 kW and 3.7 kW (2.2 kW와 3.7 kW 유도전동기의 정상과 구속운전에 따른 전류 및 온도 특성)

  • Jong-Chan Lee;Doo-Hyun Kim;Sung-Chul Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.35-42
    • /
    • 2023
  • This study analyzed the current and temperature characteristics of major components of an induction motor during normal and abnormal operations as functions of the difference in the rated capacities of medium and large-sized motors widely used in industrial settings. The temperature rise equation of the induction motor winding was derived through locked-rotor operation experiments and linear regression analysis. When the ambient temperature is 40 ℃, the time to reach 155 ℃, the temperature limit of the insulation class (F class) of the winding of the induction motor, was confirmed to be 48 seconds for the 2.2 kW induction motor and 39 seconds for the 3.7 kW induction motor. This means that when the rated capacity is large or the installation environment is high temperature, the time to reach the temperature limit of the insulation class during locked-rotor operation is short, and the risk of insulation deterioration and fire is high. In addition, even if the EOCR (Electronic Over Current Relay) is installed, if the setting time is excessively set, the EOCR does not operate even if the normal and locked-rotor operation of the induction motor is repeated, and the temperature limit of the insulation grade of the winding of the induction motor is exceeded. The results of this study can be used for preventive measures such as the promotion of electrical and mechanical measures for the failure of induction motors and fire prevention in industrial sites, or the installation of fire alarm systems.

Induction Motor Starting Characterization with Power Factor Correction Capacitors (역률개선 콘덴서를 이용한 유도전동기 기동특성 분석)

  • Son, Seok-Geum
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.3
    • /
    • pp.206-212
    • /
    • 2017
  • Induction motor torque is the reactive power is needed which corresponds to the exciting current to generate the magnetic flux as the product of current and flux. For use in the method of supplying the required reactive power to the induction motor power factor correction apparatus using a lot of ways to supply in place of the power supply side, when using a power factor compensation device can reduce the apparent power, the power factor can be improved. However, the distance to the emergency generator transformers or motors from the motor capacity is smaller but short and difficult to maneuver the theory and practice of the operating characteristics of the starting characteristics of the motor used a lot of large industrial plants were measured and analyzed. Therefore, this study investigated the motor starting Analysis and interpretation for the relationship with the large motor starting torque and speed during motor starting.

Analysis of Starting Torque and Speed Characteristics for Squirrel Cage Induction Motor According to Material Properties of Rotor Slot

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.328-333
    • /
    • 2015
  • Squirrel cage induction motors have mostly been used for their small capacity because the starting torque is smaller than the starting current during start-up. However, as more and more mid-to-large capacity motors are developed, the demands for improvements in performance characteristics have also increased. In this study, the starting characteristics of squirrel cage induction motors were analyzed based on the rotor materials and shapes using a finite element method to provide design data suitable for different use purposes and capacities. We further completed analysis by combining electromagnetic equations deduced from Maxwell’s equations and the circuit equations of stators and rotors. A moving coordinator was introduced to rotate the rotor during the analysis, and the torques calculated via the finite element method were combined with the motion equations to calculate the position and angular velocity of the rotors at the next time, thereby analyzing the transient characteristics. The analysis results of the transient characteristics were applied to a 3-phase 4-pole 5-hp induction motor to calculate the starting torque, speed, and rotation angle of the rotors. In the reference model, the materials and shapes of the rotor slot were changed to copper and silicon copper and a deep slot, shallow slot, and long-neck-shaped slot.

A Study on Starting Characteristic and Improvement for High Power Motor with Tunnel Boring Machine (TBM용 대용량 전동기의 기동 특성 및 개선 관한 연구)

  • Kim, Tae-Kue;An, Joon-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.44-51
    • /
    • 2019
  • Tunnel Boring Machine's Technology has depends mostly on imports, currently domestic technology development was proceeding. There are many technologies in this field, above all, the large-capacity motor drive technology required for excavation is one of the core technologies. In particular, when several large motors are simultaneously starting, there are many problems due to a large starting current at that time, and it is difficult to design and operate a power receiving facility. In this paper, A method of reducing the starting current by using the regenerative power generated by the deceleration of the motor has been studied. To verify this proposal, we designed the induction motor controller using CAE based power simulation tool and verified the results of the proposed method by applying the reduced model. As a result, it is possible to reduce the maximum starting current and shorten the start-up time. Moreover, even if several motors are connected to one bank, it is proved that the method can be efficiently operated by using the sequential braking / starting sequence. In the case of a power system in which a large capacity electric motor such as a tunnel excavation system is driven, the results of this study are expected to be a stable and effective method for solving the start-up current problem and designing the power receiving facility.

A Study on Improving High-Power Induction Motor Starting (대용량 유도전동기 기동 개선에 관한 연구)

  • Son, Seok-Geum
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.178-184
    • /
    • 2016
  • The motor power of the industry to use the electric energy is gradually increased. The electric motor generates a voltage drop in the starting current during startup. The starting current is started it is difficult to have an adverse effect on neighboring power systems with large motor starting when the voltage drop across the power grid. In addition to that the motor torque according to the load depending on the size of the rotation speed is changed to a motor start-up speed is important. However, the distance to the emergency generator transformers or motors from the motor capacity is smaller but short and difficult to maneuver the theory and practice of the operating characteristics of the starting characteristics of the motor used a lot of large industrial plants were measured and analyzed. Therefore, this study investigated the motor starting Analysis and interpretation for the relationship with the large motor starting torque and speed during motor starting.

Rotordynamic Model Development and Critical Speed Estimation Through Modal Testing for the Rotor-Bearing System of a MW Class Large-Capacity Induction Motor (MW급 대용량 유도전동기 축계의 모드실험 기반 회전체 동역학 해석모델 수립 및 위험속도 예측)

  • Park, Jisu;Choi, Jae-Hak;Kim, Dong-Jun;Sim, Kyuho
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.279-289
    • /
    • 2020
  • In this paper, a method is proposed for establishing an approximate prediction model of rotor-dynamics through modal testing. In particular, the proposed method is applicable to systems that cannot be established according to conventional methods owing to the absence of information regarding the dimensions and material of the rotor-bearing system. The proposed method is demonstrated by employing a motor dynamometer driven by a 1 MW class induction motor without dimension and material information. The proposed method comprises a total of seven steps, wherein an initial model is established by incorporating approximate dimensions and material information, and the model is improved on the basis of the natural frequency characteristics of the system. During model improvement, the modification factor is introduced for adjusting the elastic modulus and shear modulus of the system. Analysis of critical speed and imbalance response indicates that the separation margin is 67% and the maximum vibration amplitude is less than the amplitude limit of 0.032 mm under the API 611 standard, which means that the motor dynamometer can stably operate at a rated speed of 1800 rpm. Hence, the obtained results validate the feasibility of the proposed method. Furthermore, for broad usage, it is necessary to accordingly apply and validate the proposed method for various rotor-bearing systems.

The Development of a 20MW PWM Driver for Advanced Fifteen-Phase Propulsion Induction Motors

  • Sun, Chi;Ai, Sheng;Hu, Liangdeng;Chen, Yulin
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.146-159
    • /
    • 2015
  • Since the power capacity needed for the propulsion of large ships is very large, a multiphase AC induction propulsion mode is generally adopted to meet the higher requirements of reliability, redundancy and maintainability. This paper gives a detailed description of the development of a 20MW fifteen-phase PWM driver for advanced fifteen-phase propulsion induction motors with a special third-harmonic injection in terms of the main circuit hardware, control system design, experiments, etc. The adoption of the modular design method for the main circuit hardware design can make the enclosed mechanical structure simple and maintainable. It can also avoid the larger switch stresses caused by the multiple turn on of the IGBTs in conventional large-capacity converter systems. The use of the distributed controller design method based on a high-speed fiber-optic ring net for the control system can overcome such disadvantages as the poor reliability and long maintenance times arising from the conventional centralized controller which is designed according to point-to-point communication. Finally, the performance of the 20MW PWM driver is verified by experimentation on a new fifteen-phase induction propulsion motor.

The Performance Evaluation and the Design of Controller for the Highly Efficient BLDC Motor using Numerical Analysis (수치해석에 의한 고효율 BLDC 모터의 제어기 설계 및 성능평가에 관한 연구)

  • Woo, Chun-Hee;Park, Gun-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.2
    • /
    • pp.62-66
    • /
    • 2006
  • This thesis focuses on the design of control schemes for highly efficient BLDC motor drive applications using drives with output capacity of 1Hp. The control system was designed and implemented on a PIC micro-controller and applied to an electric vehicle as a viable replacement to the existing a high phase induction motor that is currently being used for these low cost, small traction drive applications. This paper for the brushless drive research has shown the optimization of the drive system for improved drive design and switching techniques that can improve the entire drive system efficiency for electric vehicle both large and small traction applications using sinusoidal PWM techniques for synthesizing the AC waveforms needed to control these traction drives. In addition, Numerical simulation was conducted to evaluate the performance of designed BLDC Motor using MotorPro simulator.

Force Commutated Circuit for Driving The Load Commutated Current Source Inverter (부하전류식(負荷轉流式) 전류형(電流型) 인버터를 구동(驅動)하기 위한 강제전류회로(强制轉流回路))

  • Chung, Y.T.;Lee, S.Y.;Soh, Y.C.;Lee, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.731-735
    • /
    • 1993
  • When induction motor is driven with a load commutated inverter, the output part of the inverter must be capacitive. But, in order to be a good load commutation at the low speed range, very large capacitor or force commutated circuit must be used regarding the capacity of motor. This paper proposed the force commutated circuit for driving the motor in case of the installation of capacitor which can be capable of load commutation at the rating speed. The force commutated circuit is operated by the LC resonant circuit, auxiliary source and SCR, and also composed of the commutation circuit which control the interval of the inverse voltage across the inverter.

  • PDF

Selection of Motor Starting Method by Numeric Simulation (기동시뮬레이션 방법에 의한 유도전동기 기동방식 선정)

  • Chang, Chung-Koo;Suh, Sang-Jin;Lee, Min-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.817-820
    • /
    • 2002
  • Since a squirrel cage induction motor by NEMA Design types is designed to withstand full-voltage starting, direct starting method can be the most economical one. Starting a squirrel cage motor from standstill by connecting it directly across the line may allow inush currents of approximately 500-600% of rated current at lagging power factor of 35-50%. For many of the large motors, the starting inrush current may be great enough to cause voltage dips, which may adversely affect the building's lighting system. Electric utilities also have restrictions on starting currents, so that voltage fluctuations can be held to prescribed limits. Therefore the need for choosing the most appropriate method of motor starting is quite essential. In this paper, we proposed a plan for the selection of the most appropriate motor starting method, first by way of numeric simulation using manufacturer's data and second by way of actual experience. So far, more often than not, the selection of motor starting method has been accomplished only as regards to the capacity of the motor and the frequency of starting and stopping. But nowadays such high-tech apparatus as soft starters are being developed, and we are on the position to give more attention to clarify the way of selection of the motor starting method.

  • PDF