• 제목/요약/키워드: large- amplitude

검색결과 783건 처리시간 0.026초

Analysis of shear lag effect in the negative moment region of steel-concrete composite beams under fatigue load

  • Zhang, Jinquan;Han, Bing;Xie, Huibing;Yan, Wutong;Li, Wangwang;Yu, Jiaping
    • Steel and Composite Structures
    • /
    • 제39권4호
    • /
    • pp.435-451
    • /
    • 2021
  • Shear lag effect was a significant mechanical behavior of steel-concrete composite beams, and the effective flange width was needed to consider this effect. However, the effective flange width is mostly determined by static load test. The cyclic vehicle loading cases, which is more practical, was not well considered. This paper focuses on the study of shear lag effect of the concrete slab in the negative moment region under fatigue cyclic load. Two specimens of two-span steel-concrete composite beams were tested under fatigue load and static load respectively to compare the differences in the negative moment region. The reinforcement strain in the negative moment region was measured and the stress was also analyzed under different loads. Based on the OpenSees framework, finite element analysis model of steel-concrete composite beam is established, which is used to simulate transverse reinforcement stress distribution as well as the variation trends under fatigue cycles. With the established model, effects of fatigue stress amplitude, flange width to span ratio, concrete slab thickness and shear connector stiffness on the shear lag effect of concrete slab in negative moment area are analyzed, and the effective flange width ratio of concrete slab under different working conditions is calculated. The simulated results of effective flange width are compared with calculated results of the commonly used specifications, and it is found that the methods in the specifications can better estimate the shear lag effect in concrete slab under static load, but the effective flange width in the negative moment zone under fatigue load has a large deviation.

수신된 전파신호의 자동 변조 인식을 위한 딥러닝 방법론 (A deep learning method for the automatic modulation recognition of received radio signals)

  • 김한진;김혁진;제준호;김경섭
    • 한국정보통신학회논문지
    • /
    • 제23권10호
    • /
    • pp.1275-1281
    • /
    • 2019
  • 무선 신호의 자동 변조 인식은 지능형 수신기의 주요한 작업으로 다양한 민간 및 군대 응용분야가 있다. 본 논문에서는 딥 뉴럴 네트워크 모델을 기반한 무선통신에서 전파신호의 변조 방식을 식별하는 방법을 제안한다. 순차적인 데이터에 대해 장기적인 패턴을 잡아내는데 용이한 LSTM 모델을 통과하여 얻은 연속적인 신호의 특징값을 딥 뉴럴 네트워크의 입력 데이터로 사용하여 신호의 변조 패턴을 분류한다. 변조된 신호의 진폭 및 위상, 동상(In-phase) 반송파, 직각 위상(Quadrature-phase) 반송파의 값을 LSTM 모델의 입력 데이터로 사용하여 분류한다. 제안된 학습 방법의 성능을 검증하기 위해, 다양한 신호 대 잡음비로 10 가지 유형의 변조 신호를 포함하는 대형 데이터 세트를 사용하여 학습하고 테스트한다. 본 논문의 변조 인식 프로그램은 신호의 사전 정보가 없는 환경에서 변조방식을 예측하는데 적용될 수 있다.

Numerical simulation in time domain to study cross-flow VIV of catenary riser subject to vessel motion-induced oscillatory current

  • Liu, Kun;Wang, Kunpeng;Wang, Yihui;Li, Yulong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.491-500
    • /
    • 2020
  • The present study proposes a time domain model for the Vortex-induced Vibration (VIV) simulation of a catenary riser under the combination of the current and oscillatory flow induced by vessel motion. In this model, the hydrodynamic force of VIV comprises excitation force, hydrodynamic damping and added mass, which are taken as functions of the non-dimensional frequency and amplitude ratio. The non-dimensional frequency is related with the response frequency, natural frequency, lock-in range and the fluid velocity. The relatively oscillatory flow induced by vessel motion is taken into account in the fluid velocity. Considering that the added mass coefficient and the non-dimensional frequency can affect each other, an iterative analysis is conducted at each time step to update the added mass coefficient and the natural frequency. This model is in detail validated against the published test models. The results show that the model can reasonably reflect the effect of the added mass coefficient on the VIV, and can well predict the riser's VIV under stationary and oscillatory flow induced by vessel motion. Based on the model, this study carries out the VIV simulation of a catenary riser with harmonic vessel motion. By analyzing the bending moment near the touchdown point, it is found that under the combination of the ocean current and oscillatory flow the vessel motion may decrease the VIV response, while increase the excited frequencies. In addition, the decreasing rate of the VIV under vessel surge is larger than that under vessel heave at small vessel motion velocity, while the situation becomes opposite at large vessel motion velocity.

자동차 부품용 내열 알루미늄 합금의 고온 피로 변형 거동 (High Temperature Fatigue Deformation Behavior of Automotive Heat Resistant Aluminum Alloys)

  • 박종수;성시영;한범석;정창렬;이기안
    • 대한금속재료학회지
    • /
    • 제48권1호
    • /
    • pp.28-38
    • /
    • 2010
  • High temperature high cycle and low cycle fatigue deformation behavior of automotive heat resistant aluminum alloys (A356 and A319 based) were investigated in this study. The microstructures of both alloys were composed of primary Al-Si dendrite and eutectic Si phase. However, the size and distribution for eutectic Si phase varied: a coarse and inhomogeneous distributed was observed in alloy B (A319 based). A brittle intermethallic phase of ${\alpha}-Fe\;Al_{12}(Fe,Mn)_3Si_2$ was detected only in B alloy. Alloy B exhibited high fatigue life only under a high stress amplitued condition in the high cycle fatigue results, whereas alloy A showed high fatigue life when stress was lowered. With regard to the low-cycle fatigue result ($250^{\circ}C$) showing higher fatigue life as ductility increased, alloy A demonstrated higher fatigue life under all of the strain amplitude conditions. Fractographic observations showed that large porosities and pores near the outside surface could be the main factor in the formation of fatigue cracks. In alloy B. micro-cracks were formed in both the brittle intermetallic and coarse Si phasese. These micro-cracks then coalesced together and provided a path for fatigue crack propagation. From the observation of the differences in microstructure and fractography of these two automotive alloys, the authors attempt to explain the high-temperature fatigue deformation behavior of heat resistant aluminum alloys.

S-parameter의 변화를 유도하는 임피던스 변화 감지를 통한 전자회로의 결함검출회로 (The defect detection circuit of an electronic circuit through impedance change detection that induces a change in S-parameter)

  • 서동환;강태엽;유진호;민준기;박창근
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.689-696
    • /
    • 2021
  • 본 논문에서는 고장예측진단 및 건전성 관리 기법(Prognostics and Health Management, PHM)을 적용하기 위해 해당 시스템 혹은 회로 내부에서 결함특성을 감지하고 예측할 수 있는 회로 구조를 제안하였다. 기존 연구에서 회로 결함의 진행에 따라, S-parameter 크기 최소값의 주파수가 변화하는 것을 확인하였다. 이러한 특성을 기존에는 네트워크 분석기(Network Analyzer)를 활용하여 측정하였으나, 본 연구에서는 같은 결함검출기법을 활용하더라도 큰 계측장비 없이 결함의 진행상황 및 잔여 수명, 결함발생 여부를 확인할 수 있는 소형화된 회로를 설계하였다. 본 연구에서는 S-parameter의 변화를 야기하는 임피던스의 변화를 감지할 수 있도록 회로를 설계하였으며, Bond-wire의 온도반복에 따른 S-parameter 변화 측정결과를 제안하는 회로에 적용하였다. 이를 통해 해당 회로가 Bond-wire의 결함을 감지할 수 있다는 것을 성공적으로 검증하였다.

Influences of guideway geometry parameters and track irregularity on dynamic performances of suspended monorail vehicle-guideway system

  • He, Qinglie;Yang, Yun;Cai, Chengbiao;Zhu, Shengyang
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.1-16
    • /
    • 2022
  • This work elaborately investigates the influences of the guideway geometry parameters and track irregularity on the dynamic performances of the suspended monorail vehicle-guideway system (SMVGS). Firstly, a spatial dynamic analysis model of the SMVGS is established by adopting ANSYS parameter design language. Then, the dynamic interaction between a vehicle with maximum design load and guideway is investigated by numerical simulation and field tests, revealing the vehicle-guideway dynamic features. Subsequently, the influences of the guideway geometry parameters and track irregularity on the dynamic performances of the SMVGS are analyzed and discussed in detail, and the reasonable ranges of several key geometry parameters of the guideway are also obtained. Results show that the vehicle-guideway dynamic responses change nonlinearly with an increase of the guideway span, and especially the guideway dynamic performances can be effectively improved by reducing the guideway span; based on a comprehensive consideration of all performance indices of the SMVGS, the deflection-span ratio of the suspended monorail guideway is finally recommended to be 1/1054~1/868. The train load could cause a large bending deformation of the pier, which would intensify the car-body lateral displacement and decrease the vehicle riding comfort; to well limit the bending deformation of the pier, its cross-section dimension is suggested to be more than 0.8 m×0.8 m. The addition of the track irregularity amplitude has small influences on the displacements and stress of the guideway; however, it would significantly increase the vehicle-guideway vibrations and rate of load reduction of the driving tyre.

다상 BLDC 모터 드라이브 시스템의 개방 고장 시 효율 향상이 고려된 토크 리플 저감 대책 (Torque Ripple Reduction Method With Enhanced Efficiency of Multi-phase BLDC Motor Drive Systems Under Open Fault Conditions)

  • 김태윤;서용석;박현철
    • 전력전자학회논문지
    • /
    • 제27권1호
    • /
    • pp.33-39
    • /
    • 2022
  • A multi-phase brushless direct current (BLDC) motor is widely used in large-capacity electric propulsion systems such as submarines and electric ships. In particular, in the field of military submarines, the polyphaser motor must suppress torque ripple in various failure situations to reduce noise and ensure stable operation for a long time. In this paper, we propose a polyphaser current control method that can improve efficiency and reduce torque ripple by minimizing the increase in stator winding loss at maximum output torque by controlling the phase angle and amplitude of the steady-state current during open circuit failure of the stator winding. The proposed control method controls the magnitude and phase angle of the healthy phase current, excluding the faulty phase, to compensate for the torque ripple that occurs in the case of a phase open failure of the motor. The magnitude and phase angle of the controlled steady-state current are calculated for each phase so that copper loss increase is minimized. The proposed control method was verified using hardware-in-the-loop simulation (HILS) of a 12-phase BLDC motor. HILS verification confirmed that the increase in the loss of the stator winding and the magnitude of the torque ripple decreased compared with the open phase fault of the motor.

프레스성형공정에서 금형에 전달되는 진동 신호에 기반한 공정특성 분석에 대한 연구 (A Study on Process Characterization based on Vibration Signals Transmitted to the Mold in the Press Molding Process)

  • 이준한;김종선
    • Design & Manufacturing
    • /
    • 제17권1호
    • /
    • pp.56-63
    • /
    • 2023
  • In this study, the vibration signal of the mold was measured and analyzed to monitor the process information and characteristics during the press molding process. A necklace-type picture frame mold was used for press molding, and the vibration signal was measured by GY-61 acceleration sensor module attached to the surface of the upper (movable) mold base. The change of the vibration signal of the mold according to press speed was analyzed. As a result, the vibration signal had a large change at five sections: "Holder contact", "Punch contact and start of pressing", "End of pressing", "Mold open", and "Demolding". The time difference between "Punch contact and start of pressing" and "End of pressing" means the pressing time which is the actual time the material is molded under pressing pressure. The time intervals for each section, represented by the time interval between "Holder contact" and "Punch contact and start of pressing", can be used to compare and evaluate the press speed applied to the process. By comparing the vibration signals at 60 rpm and 90 rpm, the amplitude at the section of "Punch contact and start of pressing" increased as the press speed increased. This result means that as the press speed increases, more force and pressure is applied to the material. Also, the peak values of the other sections were found to increase as the press speed increased. It was found that the pressing time, the time interval between "Punch contact and start of pressing" and "End of pressing", decreases as the pressing speed increases. Similarly, press speed factor, the time interval between "Holder contact", and "Punch contact and start of pressing", is found to be shorter. Therefore, based on the result of this study, the pressing time, press speed, pressing(punching) pressure of each cycle can be monitored by measuring the vibration signal of the mold. Also, it was confirmed that the level and trend of process information and characterization can be evaluated as the change of the mold vibration during press molding.

  • PDF

Effects of Thinning and Climate on Stem Radial Fluctuations of Pinus ponderosa and Pinus lambertiana in the Sierra Nevada

  • Andrew Hirsch;Sophan Chhin;Jianwei Zhang;Michael Premer
    • Journal of Forest and Environmental Science
    • /
    • 제39권2호
    • /
    • pp.81-95
    • /
    • 2023
  • Due to the multiple ecosystem benefits that iconic large, old growth trees provide, forest managers are applying thinning treatments around these legacy trees to improve their vigor and reduce mortality, especially in the face of climate change and other forest health threats. One objectives of this study was to analyze sub-hourly stem fluctuations of legacy ponderosa (Pinus ponderosa Dougl. Ex P. & C. Laws) and sugar pines (Pinus lambertiana Dougl.) in the mixed-conifer forests of the Sierra Nevada in multiple different radius thinning treatments to assess the short-term effects of these treatments. Thinning treatments applied were: R30C0 (9.1 m radius), R30C2 (9.1 m radius leaving 2 competitors), and RD1.2 (radius equaling DBH multiplied by 1 ft/in multiplied by 1.25). The other objective was to assess climatic drivers of hourly stem fluctuations. Using the dendrometeR package, we gathered daily statistics (i.e. daily amplitude) of the stem fluctuations, as well as stem cycle statistics such as duration and magnitude of contraction, expansion, and stem radial increment. We then performed correlation analyses to assess the climatic drivers of stem fluctuations and to determine which radial thinning treatment was most effective at improving growth. We found an important role that mean solar radiation, air temperature, and relative humidity play in stem variations of both species. One of the main findings from a management perspective was that the RD1.2 treatment group allowed both species to contract less on warmer and higher solar radiation days. Furthermore, sugar pine put on more stem radial increment on higher solar radiation days. These findings suggest that the extended radius RD1.2 thinning treatment may be the most effective at releasing legacy sugar and ponderosa pine trees compared to the other forest management treatments applied.

선형 예측 분석 기반의 딱총 새우 잡음 검출 기법 (Linear prediction analysis-based method for detecting snapping shrimp noise)

  • 박진욱;홍정표
    • 한국음향학회지
    • /
    • 제42권3호
    • /
    • pp.262-269
    • /
    • 2023
  • 본 논문에서는 선형 예측 분석을 기반으로 한 딱총새우 잡음 검출을 위한 특징을 제안한다. 딱총새우는 천해에 서식하는 종으로, 높은 진폭의 신호를 생성하고 빈번하게 발생하기 때문에 수중 잡음의 주된 원인 중 하나이다. 제안된 특징은 딱총새우 잡음이 갑작스럽게 발생하고 빠르게 소멸하는 특징을 활용하기 위해 선형 예측 분석을 이용하여 정확한 잡음 구간을 검출하고 딱총새우 잡음의 영향을 줄인다. 선형 예측 분석으로 예측한 값과 실제 측정값 사이의 오차가 크기 때문에 이를 통해 효과적으로 딱총새우 구간 검출이 가능해진다. 추가적으로 제안된 특징에 일정 오경보 확률 탐지기를 결합하여 잡음 구간 검출 성능을 추가적으로 개선한다. 제안한 방법을 딱총새우 잡음 구간 검출 최신 방법으로 알려진 다층 웨이블릿 패킷 분해와 비교한 결과, 제안한 방법이 수신자 조작 특성 곡선과 곡선 아래의 면적 측면에서 성능이 평균적으로 0.12만큼 우수하였고 계산량 측면에서도 계산 복잡도가 더 낮았다.