• Title/Summary/Keyword: large vacuum chamber

Search Result 64, Processing Time 0.024 seconds

Domestic Construction of a Large Thermal Vacuum Chamber for Space Environment Simulation (우주환경모사를 위한 대형열진공챔버 국산화 구축)

  • Cho, Hyok-Jin;Moon, Guee-Won;Seo, Hee-Jun;Lew, Sang-Hoon;Choi, Seok-Weon
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.64-73
    • /
    • 2007
  • A Large thermal vacuum chamber (LTVC) for space environment simulation on large satellites was successfully developed and constructed by KARI (Korea Aerospace Research Institute) in Korea with a local company. This chamber has an effective diameter of 8 meters and depth of 10 meters, and is composed of vacuum system, thermal control system, and anti-vibration system. Temperature below $-190^{\circ}C$ is maintained over the thermal shroud wrapping a satellite under $3.7{\times}10^{-5}Pa$ ($5{\times}10^{-7}torr$) vacuum level, and optical test can be done in this chamber by seismic mass with $10^{-5}g_{rms}$ or lower vibration level. In addition, the shroud temperature can be increased up to $123^{\circ}C$ using halogen lamps. Chamber control program based on PLC (Programmable Logic Controller) could control this large thermal vacuum chamber automatically.

  • PDF

Consideration on the helium leak detection in a large vacuum chamber (대형 진공용기의 헬륨 누설검사 방법에 대한 고찰)

  • In, S.R.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.235-243
    • /
    • 2007
  • Nowadays, in our country, large vacuum chambers for huge experimental facilities such as the tokamak fusion device, high power neural beam test stand, and space simulator have been constructed. In such a vacuum chamber of very large size, it is quite complicate to check on leakage quantitatively, while the probability of a leak is relatively high. To investigate the feasibility of applying reliably a helium leak detection to the huge vacuum chambers, and to find a reasonable methodology of choosing an optimum set-up for leak detection, several virtual constructions of the leak detection system have been analyzed by calculating the pressure distribution in the system and the helium level in the sensor part.

대형 열진공챔버용 극저온 모사장치 개발

  • Lee, Sang-Hoon;Cho, Hyok-Jin;Seo, Hee-Jun;Moon, Guee-Won;Choi, Seok-Weon
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.103-108
    • /
    • 2004
  • The space environment is characterized such a severe condition as high vacuum and very low temperature. Since a satellite will be exposed such a space environment as soon as it goes into the its orbit, thermal vacuum test should be carried out to verify the performance of the satellite on the ground under the space environmental conditions. KARI has a thermal vacuum chamber with useful dimensions of ∮3.6m×L3m, in which KOMPSAT-1 and KOMPSAT-2 satellites were tested. But very large thermal vacuum chamber with useful dimensions of ∮8m×L10m has been needed to meet the future demand of large satellites. Generally, the thermal vacuum chamber can be divided into a vacuum system and a thermal system. Especially, a cryogenic system in the thermal system simulates very low temperature of -196℃ under the high vacuum condition. In this paper, we propose the new cryogenic system can be applied to the future large thermal vacuum chamber.

  • PDF

EPICS Based Vacuum Chamber Temperature Control System for PAL Storage Ring (가속기 저장링 진공 챔버 온도측정용 제어시스템 개발 및 EPICS 적용)

  • Yoon, J.C.;Choi, J.Y.;Kang, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2652-2654
    • /
    • 2005
  • A vacuum chamber temperature control system of Pohang Accelerator Laboratory (PAL) storage ring is a subsystem upgraded PAL control system, which is based upon Experimental Physics and Industrial Control System (EPICS) [1]. There are two control components, data acquisition system (SA120 data logger), development control system IOC (Input/Output Controller) at the storage ring of PAL. There are 240 vacuum chamber at the storage ring. It was a very important problem to solve how to monitor such a large number of vacuum chamber temperature distributed around the ring. The IOC connect MODBUS/JBUS field network to asynchronous serial ports for communication with serial device. It can simultaneously control up to 4 data acquisition systems. Upon receiving a command from a IOC running under Windows2k through the network, the IOC communicate through the slave serial interface ports to SA120. We added some software components on the top of EPICS toolkit. The design of the vacuum control system is discussed. This paper describes the development vacuum chamber temperature control system and how the design of this system.

  • PDF

Design of a Large Magnetron Sputtering System for TFT LCD and Investigation of Sputtered AI Film Properties (TFT LCD 제조용 대면적 Magnetron Sputtering 장치 설계와 Al 성장막 특성 조사)

  • 유운종
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.480-485
    • /
    • 1993
  • Factros considered building the magnetron sputtering system for TFT LCD (thin film transistor liquid crystal display0 metallization were thin film thichnes uniformity, temperature uniformity and the pressure gradient of sputtering gas flow in vacuum chamber, base pressure, and the stability fo the carrier moving . The system was consisted of a deposition chamber, a pre-heating chamber, a RF-precleaning chamber and a load/unload lock chamber. The system was designed to handle a substrate with dimension of 400$\times$400mm. The temperautre uniformity of a heater table developed showed $250 ^{\circ}C\pm$5% accuracyon the substrate glass. A base pressure of 1.8 $\times$10-7 torr was obtained after 24 hours pumping with a cryo pump. After an aluminum target was installed in a sputtering source and the film wa sdeposited on the glass, the uniformity, reflectivity and sheet resistance of the deposited film were measured.

  • PDF

Asay of the fabrication technology of the KSTAR vacuum vessel mockup (KSTAR 진공용기 시작품 제작관련 기술분석)

  • 조승연
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.391-396
    • /
    • 1999
  • KSTAR vacuum vessel mockup was fabricated by Korea Heavy Industries. The fabrication technology chosen for the mockup is introduced and assessed in this paper. KSTAR vacuum vessel is a huge vacuum chamber of 52 cubic meters never built in this country. Through the experiency of the KSTAR mockup fabrication, welding methods for obtaining both ultra high vacuum and structural integrity of the large vacuum chamber are extracted. The fabrication and assembly techniques for the complicated structure composed of reinforced ribs, double walls and various ports are also developed. A nondestructive test on the welding spot was performed and the results show that no major leaks violating the criterion were found. The one of the main objectives of the mockup fabrication is to measure the dimensions of the structure before and after fabrication, which plays an important role in the fabrication and the assembly. By assaying the problems occurred during mockup fabrication, the KSTAR mockup will provide the techniques for the fabrication of the main vacuum vessel.

  • PDF

THERMAL BALANCE MODELLING AND PREDICTION FOR A GEOSTATIONARY SATELLITE (정지궤도 위성의 열평형 시험 모델링 및 예비 예측)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.142-147
    • /
    • 2009
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean and meteorological observations. It will be tested under vacuum condition and very low temperature in order to verify thermal design of COMS. The test will be performed by using KARI large thermal vacuum chamber, which was developed by KARI, and the COMS will be the first flight satellite tested in this chamber. The purposes of thermal balance test are to correlate analytical model used for design evaluation and predicting temperatures, and to verify and adjust thermal control concept. KARI has plan to use heating plates to simulate space hot condition especially for radiator panels such as north and south panels. They will be controlled from 90K to 273K by circulating GN2 and LN2 alternatively according to the test phases, while the shroud of the vacuum chamber will be under constant temperature, 90K, during all thermal balance test. This paper presents thermal modelling including test chamber, heating plates and the satellite without solar array wing and Ka-band reflectors and discusses temperature prediction during thermal balance test.

  • PDF

Removal of residual VOCs in a collection chamber using decompression for analysis of large volatile sample

  • Lee, In-Ho;Byun, Chang Kyu;Eum, Chul Hun;Kim, Taewook;Lee, Sam-Keun
    • Analytical Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • In order to measure the volatile organic compounds (VOCs) of a sample which is too large to use commercially available chamber, a stainless steel vacuum chamber (VC) (with an internal diameter of 205 mm and a height of 50 mm) was manufactured and the temperature of the chamber was controlled using an oven. After concentrating the volatiles of the sample in the chamber by helium gas, it was made possible to remove residual volatile substances present in the chamber under reduced pressure ((2 ± 1) × 10-2 mmHg). The chamber was connected to a purge & trap (P&T) using a 6 port valve to concentrate the VOCs, which were analyzed by gas chromatography-mass spectrometry (GC-MS) after thermal desorption (VC-P&T-GC-MS). Using toluene, the toluene recovery rate of this device was 85 ± 2 %, reproducibility was 5 ± 2 %, and the detection limit was 0.01 ng L-1. The method of removing VOCs remaining in the chamber with helium and the method of removing those with reduced pressure was compared using Korean drinking water regulation (KDWR) VOC Mix A (5 μL of 100 ㎍ mL-1) and butylated hydroxytoluene (BHT, 2 μL of 500 ㎍ mL-1). In case of using helium, which requires a large amount of gas and time, reduced pressure ((2 ± 1) × 10-2 mmHg) only during the GC-MS running time, could remove VOCs and BHT to less than 0.1 % of the original injection concentration. As a result of analyzing volatile substances using VC-P&T-GC-MS of six types of cell phone case, BHT was detected in four types and quantitatively analyzed. Maintaining the chamber at reduced pressure during the GC-MS analysis time eliminated memory effect and did not affect the next sample analysis. The volatile substances in a cell phone case were also analyzed by dynamic headspace (HT3) and GC-MS, and the results of the analysis were compared with those of VC-P&T-GC-MS. Considering the chamber volume and sample weight, the VC-P&T configuration was able to collect volatile substances more efficiently than the HT3. The VC-P&T-GC-MS system is believed to be useful for VOCs measurement of inhomogeneous large sample or devices used inside clean rooms.

A Study on the Rapid Cooling Vacuum System for the Storage and Transportation of the Cold Agriculture and Livestock Products (농축산물의 저장 및 유통을 위한 감압증발 급냉각 시스템에 관한 연구)

  • 김성규;김원녕;김경석;최순열;전현필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.26-36
    • /
    • 1997
  • Recently, the new refrigerating system, using non - fluorinated hydrocarbon refrigerants has to be developed for the agricultural fields. One of that kinds of systems is the cooling system using the water vapor and vacuum, in which the water evaporate at the low temperature under vacuum and absorb the large amount of the latent heat. If vapor with large amount of latent heat is removed from the system, the system is cooled accordingly. The characteristics of cooling under the vacuum was observed and measured using experimental apparatus, which is consisted of vacuum chamber, the ejectors, the pumps and the measurement apparatus. As the results of experiments, we know that the evaporation in the vacuum occurs vigorously when the materials to be cooled has more amounts of heat before cooling, and by which effects the materials can be cooled. The cooling vacuum system is more efficient than other methods when the agricultural products is chilled or dried.

  • PDF

Concept Design of Vibration Isolation System for Development of Optical Payload of Satellite (위성광학탑재체 개발을 위한 나노급 방진장치 개념 설계)

  • Lee, Sang-Hoon;Cho, Hyok-Jin;Seo, Hee-Jun;Kim, Young-Key;Moon, Guee-Won;Moon, Sang-Moo;Kim, Hong-Bea
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.949-952
    • /
    • 2005
  • According to the national space program in Korea, is satellites will be launch into space up to 2015. Especially, KARI is going to develope of its own a high resolution camera of less than 1m to be mounted on next Multipurpose Satellite. When performing testing of large spacecraft or hardware that will be launched into orbit, it is necessary to conduct a testing with space-simulated environment. To achieve this requirement, thermal vacuum chamber is generally used. KARI has been developed a very Large Thermal Vacuum Chamber(LTVC) from 2003 to accomodate future space program, such as KOMPSAT, COMS, and Launch vehicles. This new facility will be used to qualify the first self developed High Resolution Camera, which will be loaded on KOMPSAT-3. To perform an optical test for space camera, it is necessary to provide vibration free environment. Thus the vibration responses on the optical table due to external vibration should be minimized by using a special isolation system. In this paper, we propose the concept design of vibration isolation system for the development of the high resolution camera.

  • PDF