• Title/Summary/Keyword: large scale structural analysis

Search Result 345, Processing Time 0.03 seconds

Two-dimensional rod theory for approximate analysis of building structures

  • Takabatake, Hideo
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.1-19
    • /
    • 2010
  • It has been known that one-dimensional rod theory is very effective as a simplified analytical approach to large scale or complicated structures such as high-rise buildings, in preliminary design stages. It replaces an original structure by a one-dimensional rod which has an equivalent stiffness in terms of global properties. If the structure is composed of distinct constituents of different stiffness such as coupled walls with opening, structural behavior is significantly governed by the local variation of stiffness. This paper proposes an extended version of the rod theory which accounts for the two-dimensional local variation of structural stiffness; viz, variation in the transverse direction as well as longitudinal stiffness distribution. The governing equation for the two-dimensional rod theory is formulated from Hamilton's principle by making use of a displacement function which satisfies continuity conditions across the boundary between the distinct structural components in the transverse direction. Validity of the proposed theory is confirmed by comparison with numerical results of computational tools in the cases of static, free vibration and forced vibration problems for various structures.

A Study on Structural Design and Analysis of Large Scale and High Efficiency Blades for Wind Turbine System (대형급 고효율 풍력 발전 시스템 블레이드 구조 설계 및 해석 연구)

  • Kong, Changduk;Kim, Minwoong;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.4
    • /
    • pp.7-11
    • /
    • 2012
  • Recently, the renewable energy has been widely used as a wind energy and solar energy resource due to lack and environmental issues of the mostly used fossil fuel. In this situation, the interest in wind power has been risen as an important energy source. For this blade a high efficiency wind turbine blade was designed with the proposing aerodynamic design procedure, and a light and low cost composite structure blade was designed considering fatigue life. Structural analyses including load case study, stress, deformation, buckling, fatigue life and vibration analysis were performed using the Finite Element Method.

Study on the Time Response of Reduced Order Model under Dynamic Load (동하중 하에서 축소 모델의 구성과 전체 시스템 응답과의 비교 연구)

  • 박수현;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.11-18
    • /
    • 2004
  • In this paper, an efficient model reduction scheme is presented for large scale dynamic systems. The method is founded on a modal analysis in which optimal eigenvalue is extracted from time samples of the given system response. The techniques we discuss are based on classical theory such as the Karhunen-Loeve expansion. Only recently has it been applied to structural dynamics problems. It consists in obtaining a set of orthogonal eigenfunctions where the dynamics is to be projected. Practically, one constructs a spatial autocorrelation tensor and then performs its spectral decomposition. The resulting eigenfunctions will provide the required proper orthogonal modes(POMs) or empirical eigenmodes and the correspondent empirical eigenvalues (or proper orthogonal values, POVs) represent the mean energy contained in that projection. The purpose of this paper is to compare the reduced order model using Karhunen-Loeve expansion with the full model analysis. A cantilever beam and a simply supported plate subjected to sinusoidal force demonstrated the validity and efficiency of the reduced order technique by K-L method.

  • PDF

Dynamic Sensitivity Analysis For Lateral Drift Control Of Frame-Shear Wall Structures (골조-전단벽 구조물의 횡변위제어를 위한 동적 민감도 해석)

  • Lee, Han-Joo;Kim, Ji-Youn;Han, Seung-Baek;Nam, Kyung-Yun;Kim, Ho-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.571-576
    • /
    • 2007
  • This study presents stiffness-based optimal design to control quantitatively lateral drift of frame-shear wall structures subject to seismic loads. To this end, lateral drift constraints are established by introducing approximation concept that preserves the generality of the mathematical programming and can efficiently solve large scale problems. Also, the relationships of sectional properties are established to reduce the number of design variables and resizing technique of member is developed under the 'constant-shape' assumption. Specifically, the methodology of dynamic displacement sensitivity analysis is developed to formulate the approximated lateral displacement constraints. The 12 story frame-shear wall structural models is considered to illustrate the features of dynamic stiffness-based optimal design technique proposed in this study.

  • PDF

Design-oriented acceleration response spectrum for ground vibrations caused by collapse of large-scale cooling towers in NPPs

  • Lin, Feng;Jiang, Wenming
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1402-1411
    • /
    • 2018
  • Nuclear-related facilities can be detrimentally affected by ground vibrations due to the collapse of adjacent cooling towers in nuclear power plants. To reduce this hazard risk, a design-oriented acceleration response spectrum (ARS) was proposed to predict the dynamic responses of nuclear-related facilities subjected to ground vibrations. For this purpose, 20 computational cases were performed based on cooling tower-soil numerical models developed in previous studies. This resulted in about 2664 ground vibration records to build a basic database and five complementary databases with consideration of primary factors that influence ground vibrations. Afterwards, these databases were applied to generate the design-oriented ARS using a response spectrum analysis approach. The proposed design-oriented ARS covers a wide range of natural periods up to 6 s and consists of an ascending portion, a plateau, and two connected descending portions. Spectral parameters were formulated based on statistical analysis. The spectrum was verified by comparing the representative acceleration magnitudes obtained from the design-oriented ARS with those from computational cases using cooling tower-soil numerical models with reasonable consistency.

Numerical procedures for extreme impulsive loading on high strength concrete structures

  • Danielson, Kent T.;Adley, Mark D.;O'Daniel, James L.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.159-167
    • /
    • 2010
  • This paper demonstrates numerical techniques for complex large-scale modeling with microplane constitutive theories for reinforced high strength concrete, which for these applications, is defined to be around the 7000 psi (48 MPa) strength as frequently found in protective structural design. Applications involve highly impulsive loads, such as an explosive detonation or impact-penetration event. These capabilities were implemented into the authors' finite element code, ParaAble and the PRONTO 3D code from Sandia National Laboratories. All materials are explicitly modeled with eight-noded hexahedral elements. The concrete is modeled with a microplane constitutive theory, the reinforcing steel is modeled with the Johnson-Cook model, and the high explosive material is modeled with a JWL equation of state and a programmed burn model. Damage evolution, which can be used for erosion of elements and/or for post-analysis examination of damage, is extracted from the microplane predictions and computed by a modified Holmquist-Johnson-Cook approach that relates damage to levels of inelastic strain increment and pressure. Computation is performed with MPI on parallel processors. Several practical analyses demonstrate that large-scale analyses of this type can be reasonably run on large parallel computing systems.

Parallel Computing Based Design Framework for Multidisciplinary Design Optimization (병렬 컴퓨팅 기반 다분야통합최적설계 지원 설계 프레임워크)

  • Chu, Min-Sik;Lee, Yong-Bin;Lee, Se-Jung;Choi, Dong-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.34-41
    • /
    • 2005
  • A parallel computing technique was applied to large scale structure analysis or aerodynamic design and it is a essential element in reducing the huge computation time for large scale design problem. We can use a many computers for reducing the analysis time of multidisciplinary design optimization. But previous MDO frameworks can not support a parallel design process technique so still existing which calls an analysis program continuously. In this paper, We developed a MDO framework(MLR) which supports a parallel design process to solve sequential analysis call. Finally, three sample cases are presented to show the efficiency of design time using the suggested MDO framework.

New generation software of structural analysis and design optimization--JIFEX

  • Gu, Yuanxian;Zhang, Hongwu;Guan, Zhenqun;Kang, Zhan;Li, Yunpeng;Zhong, Wanxie
    • Structural Engineering and Mechanics
    • /
    • v.7 no.6
    • /
    • pp.589-599
    • /
    • 1999
  • This paper presents the development and applications of the software package JIFEX, a new finite element system which can be used for structural analysis and optimum design by the modern computer hardware and software technologies such as MS Windows95/NT and Pentium PC platforms. The complete system of JIFEX is programmed with $C/C^{++}$ language to make full use of advanced facilities of MS Windows95/NT. In the system, the finite element data pre-processing, based on the most popular CAD package AutoCAD (R13, R14), has been implemented, so that the finite element modeling could be integrated with geometric modeling of CAD. The system not only has interactive graphics facility for data post-processing, but also realizes the real-time computing visualization by means of the Dynamic Data Exchange (DDE) technique. Running on the Pentium computers, JIFEX can solve large-scale finite element analysis problems such as the ones with more than 60000 nodes in the finite element model.

Analysis on Shear characteristics of Rubble Stone Using Large-Scale Triaxial Test (대형삼축압축시험을 이용한 사석의 전단 특성 분석)

  • Jung, Chul-Min;Kim, Jong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.263-275
    • /
    • 2002
  • In general, the values of shear strength properties of rubble stones have been given quoting from Japanese empirical recommendation when breakwater and offshore structures of port and harbor facilities were designed in Korea. but by large-scale triaxial test(specimen diameter 30cm, specimen height 60cm) carried out in Korean Water Resources Corporation in 2001, for the first time in korea, shear strength properties of rubble stones are evaluated directly. These are compared with the Japanese empirical recommendation. Therefore, the value of shear strength properties of rubble stones have been usually given quoting from Japanese empirical recommendation without laboratory or in-situ tests, but the results of this study state that shear strength properties of rubble stone can be rationally determined and shear behavior characteristics of rubble stone can be invesgated by large-scale triaxial test

A study on the rock fracture mechanism of cutter penetration and the assessment system of TBM tunnelling procedure

  • Baek, Seung-Han;Moon, Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.162-169
    • /
    • 2003
  • Excavation by TBM can be characterized by a rock-machine interaction during the cutting process on a small scale, but on a large scale the interaction between the rock mass and TBM becomes very significant. For the planning and evaluation of TBM tunnelling it needs to understand rock fracture mechanism by a cutter or cutters on a small scale, and to estimate penetration rate, advance rate and utilization on a large scale. In this study rock chipping mechanism due to cutter-penetration is analysed by numerical simulation, showing that rock chipping is mainly occurred by tensile failure. Also, through the analysis of factors that affect on TBM procedures in various assessment systems, it is determined that the key elements that should be considered in the planning and evaluation of TBM tunnelling are classified into rock properties, the geological structures and properties of rock mass, and the structural and functional specifications of the machine. The user-friendly assessment tool is developed, so that penetration rate, advance rate and TBM utilization are evaluated from various input data. The tool developed in this study can be applied to a practical TBM tunnelling by understanding TBM tunnelling procedures.

  • PDF