• Title/Summary/Keyword: large scale model test

Search Result 418, Processing Time 0.038 seconds

Model test on slope deformation and failure caused by transition from open-pit to underground mining

  • Zhang, Bin;Wang, Hanxun;Huang, Jie;Xu, Nengxiong
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.167-178
    • /
    • 2019
  • Open-pit (OP) and underground (UG) mining are usually used to exploit shallow and deep ore deposits, respectively. When mine deposit starts from shallow subsurface and extends to a great depth, sequential use of OP and UG mining is an efficient and economical way to maintain mining productivity. However, a transition from OP to UG mining could induce significant rock movements that cause the slope instability of the open pit. Based on Yanqianshan Iron Mine, which was in the transition from OP to UG mining, a large-scale two-dimensional (2D) model test was built according to the similar theory. Thereafter, the UG mining was carried out to mimic the process of transition from OP to UG mining to disclose the triggered rock movement as well as to assess the associated slope instability. By jointly using three-dimensional (3D) laser scanning, distributed fiber optics, and digital photogrammetry measurement, the deformations, movements and strains of the rock slope during mining were monitored. The obtained data showed that the transition from OP to UG mining led to significant slope movements and deformations that can trigger catastrophic slope failure. The progressive movement of the slope could be divided into three stages: onset of micro-fracture, propagation of tensile cracks, and the overturning and/or sliding of slopes. The failure mode depended on the orientation of structural joints of the rock mass as well as the formation of tension cracks. This study also proved that these non-contact monitoring technologies were valid methods to acquire the interior strain and external deformation with high precision.

Effect of the Member Joint on Structural Performance of an Arch-type Multi-span Greenhouse: A Full-scale Experimental and Numerical Study (부재 접합부가 아치형 연동온실의 구조 성능에 미치는 영향: 실대형 실험적 및 해석적 연구)

  • Choi, Man-kwon;Ryu, Hee-ryong;Cho, Myeong-whan;Yu, In-ho
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.402-410
    • /
    • 2017
  • The effect of the steel pipe member joint on the design performance of a plastic multi-span greenhouse was analysed through the comparing full-scale experiment and numerical analysis. The design performance of the greenhouse is generally evaluated through numerical analysis, but it is rare to consider the characteristics of the connections or joints of the members. In this study, the effect of the column-gutter beam-rafter-wind break wall joint on the design performance of the whole structure of a plastic multi-span greenhouse was analysed. The numerical results with assuming that the member joint are rigid condition were compared with the full-scale load test results using member joints used in the field. The stiffness of the entire structure was compared using the load-displacement relationship and the change of the load sharing ratio that the main members such as column, rafters, and wind break wall was analysed. The results of the load test were about 40% larger than the numerical result and the member stress was more than twice as large as those of the loaded columns. In order to increase the reliability of the design performance of the greenhouse, it is necessary to develop a numerical analysis model which can consider the characteristics of various joints.

Real-time Hybrid Testing a Building Structure Equipped with Full-scale MR dampers and Application of Semi-active Control Algorithms (대형 MR감쇠기가 설치된 건축구조물의 실시간 하이브리드 실험 및 준능동 알고리즘 적용)

  • Park, Eun-Churn;Lee, Sung-Kyung;Lee, Heon-Jae;Moon, Suk-Jun;Jung, Hyung-Jo;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.465-474
    • /
    • 2008
  • The real-time hybrid testing method(RT-HYTEM) is a structural testing technique in which the numerical integration of the equation of motion for a numerical substructure and the physical testing for an experimental substructure are performed simultaneously in real-time. This study presents the quantitative evaluation of the seismic performance of a building structure installed with an passive and semi-active MR damper by using RT-HYTEM. The building model that was identified from the force-vibration testing results of a real-scaled 5-story building is used as the numerical substructure, and an MR damper corresponding to an experimental substructure is physically tested by using the universal testing machine(UTM). The RT-HYTEM implemented in this study is validated because the real-time hybrid testing results obtained by application of sinusoidal and earthquake excitations and the corresponding analytical results obtained by using the Bouc-Wen model as the control force of the MR damper respect to input currents were in good agreement. Also for preliminary study, some semi-active control algorithms were applied to the MR damper in order to control the structural responses optimally. Comparing between the test results of semi-active control using RT-HYTEM and numerical analysis results show that the RT-HYTEM is more resonable than numerical analysis to evaluate the performance of semi-active control algorithms.

A measurement of flow noise spectrum of an axisymmetric body (축대칭 3차원 물체의 유동 소음 스펙트럼 측정)

  • Park, Yeon-Gyu;Kim, Yang-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.725-733
    • /
    • 1998
  • The pressure fluctuation on the surface of a submerged body has been recognized as a dominant noise source. There have been many studies concerning the flow induced noise on a flat plate. However, the noise over an axisymmetric body has not been well reported. This paper addresses the way in which we have investigated the mechanism of noise generation due to an axisymmetric body. The associated experiments and signal processing methods are introduced. A 3-dimensional axisymmetric body whose length and diameter were 2 m and 10.4 cm, was prepared as a test specimen. The wall pressure on the surface of the body was measured in a large scale low noise wind tunnel at KIMM(Korea Institute of Machinery and Metals). To measure the wall pressure, we used two microphone arrays which were tangential and normal to the flow. Based on the measured signal, frequency-wavenumber spectrum which explains the structure of turbulence noise, was estimated. Tangential to the flow, there exists convective ridge at a relatively higher wavenumber region; this can cause spatial aliasing. To circumvent this problem, the cross spectrum was interpolated. The interpolation has been performed by unwrapping the phase and smoothing the cross spectrum. The phase unwrapping was done based on the Corcos model; the phase of cross spectrum decreases linearly with the distance between microphones. Aforementioned signal processings are possible by employing the experimental results that the estimated wavenumber spectrum quite resembles the Corcos model. We try to modify the Corcos model which is applicable to the flat plate, by altering the magnitude of cross spectrum to fit the experimental data more accurately. We proposed that this wavenumber spectrum model is suitable for the 3-dimensional axisymmetric body. Normal to the flow, there exists a little correlation between signals of different microphones. The circumferential wavenumber spectrum contains uniform power along the wavenumbers.

Enhancing Classification Performance of Temporal Keyword Data by Using Moving Average-based Dynamic Time Warping Method (이동 평균 기반 동적 시간 와핑 기법을 이용한 시계열 키워드 데이터의 분류 성능 개선 방안)

  • Jeong, Do-Heon
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.4
    • /
    • pp.83-105
    • /
    • 2019
  • This study aims to suggest an effective method for the automatic classification of keywords with similar patterns by calculating pattern similarity of temporal data. For this, large scale news on the Web were collected and time series data composed of 120 time segments were built. To make training data set for the performance test of the proposed model, 440 representative keywords were manually classified according to 8 types of trend. This study introduces a Dynamic Time Warping(DTW) method which have been commonly used in the field of time series analytics, and proposes an application model, MA-DTW based on a Moving Average(MA) method which gives a good explanation on a tendency of trend curve. As a result of the automatic classification by a k-Nearest Neighbor(kNN) algorithm, Euclidean Distance(ED) and DTW showed 48.2% and 66.6% of maximum micro-averaged F1 score respectively, whereas the proposed model represented 74.3% of the best micro-averaged F1 score. In all respect of the comprehensive experiments, the suggested model outperformed the methods of ED and DTW.

Reinforcing Effect of Pre-Tensioned Rock Bolts in the Jointed Rocks Condition (록볼트 긴장에 의한 수평절리암반의 보강효과)

  • An, Joung-Hwan;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.388-396
    • /
    • 2009
  • Rock bolt is one of the most important supports for tunnelling to prevent excessive ground relaxation at the primary tunnel excavation stage. It forms a ground arch band by confining the ground around a tunnel. Rock bolt has various effects, such as support or hanging effect, internal pressure effect, arching effect, ground improvement effect etc. Most studies on rock bolt focused on the concept of support, but only a few researches on the ground reinforcing effect by pre-tensioning a rock bolts. In this study, large scale model tests are performed to investigate the ground reinforcing effect of rock bolts for regularly jointed rocks. Simple beam model was built to find out the reinforcing effect of jointed rocks, which was reinforced by pre-tensioned rock bolts. Settlement of model beam was analyzed through measuring its sagging for various installation intervals.

Factors related to the intention of healthy eating behaviors based on the theory of planned behavior: focused on adults residing in Beijing, China

  • Liu, Dan;Lee, Seungwoo;Hwang, Ji-Yun
    • Journal of Nutrition and Health
    • /
    • v.54 no.1
    • /
    • pp.67-75
    • /
    • 2021
  • Purpose: The theory of planned behavior (TPB) was used to investigate how the psychological constructs of attitude, subjective norms, and perceived behavioral control (PBC) affect the individual intention of behaviors in adults. Social support is also important in enabling the stability of healthy eating. This study examined the relationship between three major constructs of TPB as well as social support and the intention of healthy dietary behaviors in adults residing in Beijing, China using the extended TPB. Methods: The study questionnaire was based on previously validated items and an online survey was conducted from October to November 2020. Using a total of 244 Chinese adults in Beijing, multiple linear regression analysis was used to test the relationships between three major constructs of TPB as well as the social support and intention of healthy eating. Results: Among the three major constructs of TPB, subjective norms (p = 0.044) and PBC (p = 0.000) were significantly related to the behavioral intention of healthy eating (p = 0.000), and the model explained 76.6% of the variance of the behavioral intention from the three constructs of TPB included in the multiple linear regression model. The additional inclusion of social support to the model did not increase the explanatory power of the model to describe the behavioral intention of healthy eating. The subjective norms (p = 0.040) and PBC (p = 0.000) were still significant where social support did not explain the variance of the behavioral intention adequately. Conclusion: The subjective norms and PBC may be potential determinants of the behavioral intention of healthy eating in adults residing in Beijing, China. These study results can be used to promote healthy eating in Chinese adults living in urban areas. Large-scale intervention studies will be needed to determine if social norms and PBC predict the actual behaviors of healthy eating in Chinese adults.

An Analysis of Efficiency in Major University Hospitals in Domestically Capital Area Through DEA Analysis (DEA분석을 통한 국내 수도권 주요 대학병원의 효율성 분석)

  • Park, Byeong-Tae;Lee, Dong-Hyeon
    • Korea Journal of Hospital Management
    • /
    • v.16 no.4
    • /
    • pp.35-66
    • /
    • 2011
  • This study analyzed efficiency by utilizing DEA analytical technique centering on materials for 2009 of 20 major university hospitals in capital area. Input variables were utilized professor & full-time doctor, resident, nurse & number of bed hospitals. Output variables were analyzed by dividing number of annual outpatients & number of annual inpatients, and annually total outpatient profit & inpatient profit into a model of the standard for number of patients and the standard for medical profit. DEA analysis was elicited efficiency score by applying CCR, BCC, BFG, scale profit, and SE model. Through t-test after eliciting efficiency score, the implications were suggested by comparing efficiency between DMU in Seoul and DMU in capital area, by comparing between high-class general hospitals and general hospitals, and by comparing between high-class general hospitals in Seoul and 5 big hospitals. As a result of analysis, the major university hospitals in capital area showed high efficiency as a whole close to "1," but indicated low efficiency relatively in CCR field. Thus, the expansion in scale within capital area was indicated to reach the limit. Second, in a model of analyzing the standard for number of patients, the medical institutions, which are being operated efficiently, were indicated to be 10 DMUs. In the standard for medical profit, 12 DMUs were analyzed to be operated efficiently. Third, the efficiency in general hospital was higher than high-class general hospital. Thus, the efficiency of operation was indicated to be more important than scale. Also, large high-class hospitals(big 5) where are located in downtown Seoul showed the higher efficiency than other general high-class general hospitals, but were indicating very low efficiency in some DMUs. Fourth, as a result of generalizing and evaluating the number of patients and the medical profit, the efficient DMU was indicated to be more when analyzing on the basis of medical profit than the standard for number of patients. Thus, major university hospitals in capital area were indicated to make more effort for section in medical profit. Based on the analytical results of efficiency, a strategy for reinforcing efficiency in inefficient DMU was indicated to be needed a strategy of creating customers for promoting number of patients and a strategy for making operation efficient for increasing profitability.

  • PDF

Extreme Learning Machine Approach for Real Time Voltage Stability Monitoring in a Smart Grid System using Synchronized Phasor Measurements

  • Duraipandy, P.;Devaraj, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1527-1534
    • /
    • 2016
  • Online voltage stability monitoring using real-time measurements is one of the most important tasks in a smart grid system to maintain the grid stability. Loading margin is a good indicator for assessing the voltage stability level. This paper presents an Extreme Learning Machine (ELM) approach for estimation of voltage stability level under credible contingencies using real-time measurements from Phasor Measurement Units (PMUs). PMUs enable a much higher data sampling rate and provide synchronized measurements of real-time phasors of voltages and currents. Depth First (DF) algorithm is used for optimally placing the PMUs. To make the ELM approach applicable for a large scale power system problem, Mutual information (MI)-based feature selection is proposed to achieve the dimensionality reduction. MI-based feature selection reduces the number of network input features which reduces the network training time and improves the generalization capability. Voltage magnitudes and phase angles received from PMUs are fed as inputs to the ELM model. IEEE 30-bus test system is considered for demonstrating the effectiveness of the proposed methodology for estimating the voltage stability level under various loading conditions considering single line contingencies. Simulation results validate the suitability of the technique for fast and accurate online voltage stability assessment using PMU data.

Measuring elastic modulus of bacterial biofilms in a liquid phase using atomic force microscopy

  • Kim, Yong-Min;Kwon, Tae-Hyuk;Kim, Seungchul
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.863-870
    • /
    • 2017
  • With the increasing interest in using bacterial biofilms in geo-engineering practices, such as soil improvement, sealing leakage in earth structures, and hydraulic barrier installation, understanding of the contribution of bacterial biofilm formation to mechanical and hydraulic behavior of soils is important. While mechanical properties of soft gel-like biofilms need to be identified for appropriate modeling and prediction of behaviors of biofilm-associated soils, elastic properties of biofilms remain poorly understood. Therefore, this study investigated the microscale Young's modulus of biofilms produced by Shewanella oneidensis MR-1 in a liquid phase. The indentation test was performed on a biofilm sample using the atomic force microscopy (AFM) with a spherical indentor, and the force-indentation responses were obtained during approach and retraction traces. Young's modulus of biofilms was estimated to be ~33-38 kPa from these force-indentation curves and Hertzian contact theory. It appears that the AFM indentation result captures the microscale local characteristics of biofilms and its stiffness is relatively large compared to the other methods, including rheometer and hydrodynamic shear tests, which reflect the average macro-scale behaviors. While modeling of mechanical behaviors of biofilm-associated soils requires the properties of each component, the obtained results provide information on the mechanical properties of biofilms that can be considered as cementing, gluing, or filling materials in soils.