• Title/Summary/Keyword: large scale grid

Search Result 310, Processing Time 0.027 seconds

Third Party Grid Service Maketplace Model using Virtualization (가상화를 이용한 위탁형 그리드 서비스 거래망 모델)

  • Jang Sung-Ho;Lee Jong-Sik
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.45-50
    • /
    • 2005
  • Research and development of grid computing ware mainly focused on high performance computing field such as large-scale computing operation. Many companies and organizations concentrated on existing computational grid. However, service grid focusing on enterprise environments has been noticed gradually. Grid service providers of service grid construct diverse and specialized services and provide service resources that have economic feasibility to grid users. But, service resources are geographically dispersed and divided into many classes and have individual owners and management policies. In order to utilize and allocate resources effectively, service grid needs a resource management model that handles and manages heterogeneous resources of service grid. Therefore, this paper presents the third party grid service marketplace model using virtualization to solve problems of grid service resource management. Also, this paper proposes resource dealing mechanism and pricing algorithms applicable for service grid. Empirical results show usefulness and efficiency of the third party grid service marketplace model in comparison with typical economic models for grid resource management such as single auction model and double auction model.

  • PDF

Study on Multi-scale Unit Commitment Optimization in the Wind-Coal Intensive Power System

  • Ye, Xi;Qiao, Ying;Lu, Zongxiang;Min, Yong;Wang, Ningbo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1596-1604
    • /
    • 2013
  • Coordinating operation between large-scale wind power and thermal units in multiple time scale is an important problem to keep power balance, especially for the power grids mainly made up of large coal-fired units. The paper proposes a novel operation mode of multi-scale unit commitment (abbr. UC) that includes mid-term UC and day-ahead UC, which can take full advantage of insufficient flexibility and improve wind power accommodation. First, we introduce the concepts of multi-scale UC and then illustrate the benefits of introducing mid-term UC to the wind-coal intensive grid. The paper then formulates the mid-term UC model, proposes operation performance indices and validates the optimal operation mode by simulation cases. Compared with day-ahead UC only, the multi-scale UC mode could reduce the total generation cost and improve the wind power net benefit by decreasing the coal-fired units' on/off operation. The simulation results also show that the maximum total generation benefit should be pursued rather than the wind power utilization rate in wind-coal intensive system.

Numerical investigation of turbulent lid-driven flow using weakly compressible smoothed particle hydrodynamics CFD code with standard and dynamic LES models

  • Tae Soo Choi;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3367-3382
    • /
    • 2023
  • Smoothed Particle Hydrodynamics (SPH) is a Lagrangian computational fluid dynamics method that has been widely used in the analysis of physical phenomena characterized by large deformation or multi-phase flow analysis, including free surface. Despite the recent implementation of eddy-viscosity models in SPH methodology, sophisticated turbulent analysis using Lagrangian methodology has been limited due to the lack of computational performance and numerical consistency. In this study, we implement the standard and dynamic Smagorinsky model and dynamic Vreman model as sub-particle scale models based on a weakly compressible SPH solver. The large eddy simulation method is numerically identical to the spatial discretization method of smoothed particle dynamics, enabling the intuitive implementation of the turbulence model. Furthermore, there is no additional filtering process required for physical variables since the sub-grid scale filtering is inherently processed in the kernel interpolation. We simulate lid-driven flow under transition and turbulent conditions as a benchmark. The simulation results show that the dynamic Vreman model produces consistent results with experimental and numerical research regarding Reynolds averaged physical quantities and flow structure. Spectral analysis also confirms that it is possible to analyze turbulent eddies with a smaller length scale using the dynamic Vreman model with the same particle size.

Transmission Network Expansion Planning for the Penetration of Renewable Energy Sources - Determining an Optimal Installed Capacity of Renewable Energy Sources

  • Kim, Sung-Yul;Shin, Je-Seok;Kim, Jin-O
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1163-1170
    • /
    • 2014
  • Due to global environmental regulations and policies with rapid advancement of renewable energy technologies, the development type of renewable energy sources (RES) in power systems is expanding from small-scale distributed generation to large-scale grid-connected systems. In the near future, it is expected that RES achieves grid parity which means the equilibrium point where the power cost of RES is equal to the power costs of conventional generators. However, although RES would achieve the grid parity, the cost related with development of large-scale RES is still a big burden. Furthermore, it is hard to determine a suitable capacity of RES because of their output characteristics affected by locations and weather effects. Therefore, to determine an optimal capacity for RES becomes an important decision-making problem. This study proposes a method for determining an optimal installed capacity of RES from the business viewpoint of an independent power plant (IPP). In order to verify the proposed method, we have performed case studies on real power system in Incheon and Shiheung areas, South Korea.

Probabilistic Load Flow for Power Systems with Wind Power Considering the Multi-time Scale Dispatching Strategy

  • Qin, Chao;Yu, Yixin;Zeng, Yuan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1494-1503
    • /
    • 2018
  • This paper proposes a novel probabilistic load flow model for power systems integrated with large-scale wind power, which considers the multi-time scale dispatching features. The ramp limitations of the units and the steady-state security constraints of the network have been comprehensively considered for the entire duration of the study period; thus, the coupling of the system operation states at different time sections has been taken into account. For each time section, the automatic generation control (AGC) strategy is considered, and all variations associated with the wind power and loads are compensated by all AGC units. Cumulants and the Gram-Charlier expansion are used to solve the proposed model. The effectiveness of the proposed method is validated using the modified IEEE RTS 24-bus system and the modified IEEE 118-bus system.

A Windowed-Total-Variation Regularization Constraint Model for Blind Image Restoration

  • Liu, Ganghua;Tian, Wei;Luo, Yushun;Zou, Juncheng;Tang, Shu
    • Journal of Information Processing Systems
    • /
    • v.18 no.1
    • /
    • pp.48-58
    • /
    • 2022
  • Blind restoration for motion-blurred images is always the research hotspot, and the key for the blind restoration is the accurate blur kernel (BK) estimation. Therefore, to achieve high-quality blind image restoration, this thesis presents a novel windowed-total-variation method. The proposed method is based on the spatial scale of edges but not amplitude, and the proposed method thus can extract useful image edges for accurate BK estimation, and then recover high-quality clear images. A large number of experiments prove the superiority.

Characteristic Analysis elf Large Grounding system by Using Reduced Scale Model Method (축소모델 기법을 이용한 대규모 접지계의 특성분석)

  • 장석훈;이재복;명성호;조연규;김점식
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.162-167
    • /
    • 2004
  • The scale model grounding systems to study the behavior of grounding system in uniform soils have been designed and fabricated. Constructional details and instrumentation have been discussed. To verify the accuracy of the results obtained from the experimental tests, they have been compared with computer calculation results. Also, in order to assess the effectiveness of bonding two grounding systems, grounding grid conductors which were downsized as a scale factor of 100:1 were analyzed by using the scale model method. A profile of GPR(Grounding Potential Rise) of each case was measured. The scale model grounding system presented in this paper can be valuable tool to analyze the ground potential profile and ground resistance of practical grounding system.

Large eddy simulation using a curvilinear coordinate system for the flow around a square cylinder

  • Ono, Yoshiyuki;Tamura, Tetsuro
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.369-378
    • /
    • 2002
  • The application of Large Eddy Simulation (LES) in a curvilinear coordinate system to the flow around a square cylinder is presented. In order to obtain sufficient resolution near the side of the cylinder, we use an O-type grid. Even with a curvilinear coordinate system, it is difficult to avoid the numerical oscillation arising in high-Reynolds-number flows past a bluff body, without using an extremely fine grid used. An upwind scheme has the effect of removing the numerical oscillations, but, it is accompanied by numerical dissipation that is a kind of an additional sub-grid scale effect. Firstly, we investigate the effect of numerical dissipation on the computational results in a case where turbulent dissipation is removed in order to clarify the differences between the effect of numerical dissipation. Next, the applicability and the limitations of the present method, which combine the dynamic SGS model with acceptable numerical dissipation, are discussed.

Dynamic Replication Based on Availability and Popularity in the Presence of Failures

  • Meroufel, Bakhta;Belalem, Ghalem
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.263-278
    • /
    • 2012
  • The data grid provides geographically distributed resources for large-scale applications. It generates a large set of data. The replication of this data in several sites of the grid is an effective solution for achieving good performance. In this paper we propose an approach of dynamic replication in a hierarchical grid that takes into account crash failures in the system. The replication decision is taken based on two parameters: the availability and popularity of the data. The administrator requires a minimum rate of availability for each piece of data according to its access history in previous periods, but this availability may increase if the demand is high on this data. We also proposed a strategy to keep the desired availability respected even in case of a failure or rarity (no-popularity) of the data. The simulation results show the effectiveness of our replication strategy in terms of response time, the unavailability of requests, and availability.