• Title/Summary/Keyword: large mass method

Search Result 644, Processing Time 0.032 seconds

Characteristic Analysis of Nonlinear Sloshing in Baffled Tank (격막 설치에 따른 비선형 슬로싱 특성 연구)

  • Lee, Hong-Woo;Cho, Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1455-1462
    • /
    • 2005
  • In this paper, we intend to introduce a nonlinear finite element method based on the fully nonlinear potential flow theory in order to simulate the large amplitude sloshing flow in two-dimensional baffled tank subject to horizontally forced excitation. The free surface is tracked by a direct time differentiation scheme with the four-step predictor-corrector time integration method. The flow velocity is accurately recovered from the velocity potential by second-order least square method. In order to maintain the finite element mesh regularity and total mass, the semi-Lagrangian surface tracking method with area conservation is applied. According to the numerical formulae, we perform the parametric experiments by varying the installation height and the opening width of baffles, in order to examine the effects of baffle on the nonlinear liquid sloshing. From the numerical results, the hydrodynamic characteristics of the large amplitude sloshing are investigated.

Mass Production of Mg based Hydrogen Absorbing Alloys and Evalution of Hydrogenation and Degradation Properties by Hydriding/Dehydriding Cyclic Test (교반관법에 의한 Mg 기지 수소저항합금의 대량제조와 반복적 수소화 반응에 따른 수소화 특성 및 열화특성 평가)

  • Ha, Won;Lee, Sung-Gon;Hong, Tae-Whan;Kim, Young-Jig
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • Hydrogenation properties of Mg-Ni and Mg-Ti-Ni alloys were investigated by Pressure-Composition Isotherm (PCI) test. Those alloys were fabricated by a new alloying method, Rotation-Cylinder Method (RCM). The as-cast microstructure of Mg-10 mass% Ni alloy consists of an island-like hydride forming $\alpha$-Mg phase and the eutectic structure. After 350 cyclic tests, Mg-lO mass % Ni alloy was pulverized into fine particles of 100 nm. The fine particles, which have a large specific surface area, are highly reactive with hydrogen. However, extreme pulvehzation can separate Mg from $Mg_2Ni$ in the eutectic structure, so $Mg_2Ni$ of the eutectic structure cannot behave as a dissociated hydrogen supplier.

Optimal design of multiple tuned mass dampers for vibration control of a cable-supported roof

  • Wang, X.C.;Teng, Q.;Duan, Y.F.;Yun, C.B.;Dong, S.L.;Lou, W.J.
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.545-558
    • /
    • 2020
  • A design method of a Multiple Tuned Mass Damper (MTMD) system is presented for wind induced vibration control of a cable-supported roof structure. Modal contribution analysis is carried out to determine the dominating modes of the structure for the MTMD design. Two MTMD systems are developed for two most dominating modes. Each MTMD system is composed of multiple TMDs with small masses spread at multiple locations with large responses in the corresponding mode. Frequencies of TMDs are distributed uniformly within a range around the dominating frequencies of the roof structure to enhance the robustness of the MTMD system against uncertainties of structural frequencies. Parameter optimizations are carried out by minimizing objective functions regarding the structural responses, TMD strokes, robustness and mass cost. Two optimization approaches are used: Single Objective Approach (SOA) using Sequential Quadratic Programming (SQP) with multi-start method and Multi-Objective Approach (MOA) using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The computation efficiency of the MOA is found to be superior to the SOA with consistent optimization results. A Pareto optimal front is obtained regarding the control performance and the total weight of the TMDs, from which several specific design options are proposed. The final design may be selected based on the Pareto optimal front and other engineering factors.

Experimental Study on the Hydroelastic Response of a Pontoon Type Structure with Nonuniform Mass and Stiffness (불균일 강성을 갖는 폰툰형 구조물의 유탄성 응답 특성에 관한 실험 연구)

  • Cho, Seok-Kyu;Hong, Sa-Young;Kim, Jin-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.34-40
    • /
    • 2004
  • Very Large Floating Structure(VLFS) is regarded as one of promising candidates for the future utilization of ocean space. VLFS has the merits of small environmental effect. short construction term, easiness for extension and removal. It is well known that hydroelastic response is one of major design concerns of such a huge structure. Most of studies on the hydroelastic analysis of VLFS assumed uniform mass and bending stiffness. In case of a floating hotel where noticeable change of mass and stiffness at the hotel part is expected. it is necessary to investigate the effect of nonuniform mass and bending stiffness on the hydroelastic response. A model test of a pontoon type VLFS with nonuniform bending stiffness carried out for performance evaluation of a floating marina-hotel-convention center is described in this paper. Through investigation of model test results and comparison with numerical analysis using eigenfunction method, effect of the variation of bending stiffness is discussed.

Parallel Structure Design Method for Mass Spring Simulation (질량스프링 시뮬레이션을 위한 병렬 구조 설계 방법)

  • Sung, Nak-Jun;Choi, Yoo-Joo;Hong, Min
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.55-63
    • /
    • 2019
  • Recently, the GPU computing method has been utilized to improve the performance of the physics simulation field. In particular, in the case of a deformed object simulation requiring a large amount of computation, a GPU-based parallel processing algorithm is required to guarantee real-time performance. We have studied the parallel structure design method to improve the performance of the mass spring simulation method which is one of the methods of implementing the deformation object simulation. We used OpenGL's GLSL, a graphics library that allows direct access to the GPU, and implemented the GPGPU environment using an independent pipeline, the compute shader. In order to verify the effectiveness of the parallel structure design method, the mass - spring system was implemented based on CPU and GPU. Experimental results show that the proposed method improves computation speed by about 6,000% compared to the CPU Environment. It is expected that the lightweight simulation technology can be effectively applied to the augmented reality and the virtual reality field by using the design method proposed later in this research.

Developing Program for Processing a Mass DEM Data using Streaming Method (스트리밍 방식을 이용한 대용량 DEM 프로세싱 프로그램의 개발)

  • Lee, Dong-Ha;Lee, Yong-Gyun;Suh, Yong-Cheol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.4
    • /
    • pp.61-66
    • /
    • 2009
  • This Paper describes a new program called DEM Generator need to process DEM from LiDAR data or digital map data. It is difficult to generate raster DEM from LiDAR mass point data sets and digital maps too large to fit into memory. The DEM Generator was designed to process DEM and shaded relief image of GeoTiff format in order of streaming meshes; I/O minimize tag, delaunay triangle, natural neighborhood or TIN, temporary files and grid. It is expected that we can be improved the precision of DEM and solved the time consuming problem of DEM generating of a wider area.

  • PDF

Analysis of Deformation Behavior of Underground Caverns in a Discontinuous Rock Mass Using the Distinct Element Method (개별요소법을 이용한 불연속 암반내 지하공동의 변형 거동 해석)

  • Jung, Wan-Kyo;Lim, Han-Uk
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.69-81
    • /
    • 2003
  • Numerical analysis is important for the design, construction and maintenance of large caverns. The rock mass contains generally discontinuities such as faults, joints and fissures. The mechanical behavior and geometric characteristics of these discontinuities would have a significant impact on the stability of the caverns. In this research the Distinct Element Method(DEM) was used to analyze the structural stability of the large cavern. The Barton-Bandis Joint Model (B-B J.M) was used as a constitutive model for the joint. In addition, two different cases 1) analysis with a support system and 2) analysis with no support system, were analyzed to optimize a support system and to investigate reinforcing effects of a support system. The most significant parameters of in-situ stress, JRC of in-situ natural joints, and spatial distribution characteristics of discontinuities were acquired through field investigation. Displacement (horizontal, joint shear), maximum joint opening, maximum and minimum principal stresses, range of relaxed zone, rockbolt axial forces and shotcrete stresses were calculated at each excavation stage. As a result of analysis the calculated values proved to be under the allowable value Rockbolts also proved to be an efficient support measure to control joint shear displacement which had significant effects on extending the relaxed zone. As a consequence, the structural stability of the cavern was assured with an appropriate support system.

  • PDF

Effects of Forward Speed on the Linear and Nonlinear Hydrodynamic Forces Acting on Advancing Submerged Cylinders in Oscillation (동요(動搖)하는 2차원몰수체(次元沒水體)에 작용(作用)하는 선형(線形) 및 비선형(非線形) 동유체력(動流體力)에 미치는 전진속도(前進速度)의 영향(影響))

  • J.H.,Hwang;Y.J.,Kim;S.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.2
    • /
    • pp.47-54
    • /
    • 1987
  • Linear and nonlinear hydrodynamic force, which acts on submerged circular and eilliptic cylinders in oscillations as well as in advancing motion, are investigated as an initial-boundary value problem using a numerical method, which makes use of the source distribution on the body surface and the spectral method for treating the free surface waves. In the numerical code developed here, the boundary condition at the body surface is linearized. Using the numerical code so attained, nonlinear effects for different forward speeds and of the large-amplitude motion are computed. One of the major findings is that, when the forward speed is large, the added mass has its minimum and the damping force change rapidly around the frequency corresponding to the speed-frequency parameter, $\tau$=0.25, Compared to the result of Grue's [10], who used linear theory to get abrupt changes in values of the added mass and the damping force at the frequency corresponding to $\tau$=0.25, the present study, which takes nonlinear effects into account, shows much smoother variations near the frequency.

  • PDF

Stochastic micro-vibration response characteristics of a sandwich plate with MR visco-elastomer core and mass

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.141-162
    • /
    • 2015
  • The magneto-rheological visco-elastomer (MRVE) is used as a smart core to control the stochastic micro-vibration of a sandwich plate with supported mass. The micro-vibration response of the sandwich plate with MRVE core and supported mass under stochastic support motion excitations is studied and compared to evaluate the vibration suppression capability. The effects of the supported mass and localized magnetic field on the stochastic micro-vibration response of the MRVE sandwich plate are taken into account. The dynamic characteristics of the MRVE core in micro-vibration are described by a non-homogeneous complex modulus dependent on vibration frequency and controllable by applied magnetic fields. The partial differential equations for the coupled transverse and longitudinal motions of the MRVE sandwich plate with supported mass are derived from the dynamic equilibrium, constitutive and geometric relations. The simplified ordinary differential equations are obtained for the transverse vibration of the MRVE sandwich plate under localized magnetic fields. A frequency-domain solution method for the stochastic micro-vibration response of sandwich plates with supported mass is developed based on the Galerkin method and random vibration theory. The expressions of frequency-response functions, response power spectral densities and root-mean-square velocity responses of the plate in terms of the one-third octave frequency band are obtained for micro-vibration evaluation. Finally, numerical results are given to illustrate the large response reduction capacity of the MRVE sandwich plate with supported mass under stochastic support motion excitations, and the influences of MRVE parameters, supported mass and localized magnetic field placement on the micro-vibration response.

A Study on Construction of Metro Rapid Transit Network in Daegu Area (철도와 지역발전 - 대구권 광역전철망 구상과 지역발전 효과)

  • Han, Keun-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.06b
    • /
    • pp.27-41
    • /
    • 2008
  • Construction of metro transportation infra is a large-scale project requiring tremendous financial resources. This study suggests operation method to use for rapid transit line existing infra such as Gyeongbu line and spare line capacity following second phase KTX construction. Reviewing various constraints of metro rapid transit operation, we found that the conditions for metro rapid transit operation are already satisfied in Daegu area, just like the case of Gyeongbu line in Seoul Metro area. Also, the evaluation of the economic feasibility of metro rapid transit operation in Daegu area shows that B/C is about 2.4, which implies that there is sufficient economic feasibility. According to the result of sensitivity analysis, the project is economically feasible unless the passenger demand decreases 15% and construction costs increases more than 70%. B/C is evaluated large because the utilization of already exiting infra lowers the initial cost. As one of mass transportation system of large capacity, metro rapid transit can generate significant spillover effect: It will strengthen competitiveness of metro area by connecting cities within the area and by extending one-day life zone of the area, to say nothing of the benefit of improving traffic condition. The construction of metro rapid transit network is necessary for the mass transportation system of Yeongnam area as well as Daegu area, and it may work as a starting point for uniting Daegu and Gyeongbuk and strengthening regional competitiveness.

  • PDF