• 제목/요약/키워드: large injection mold

검색결과 76건 처리시간 0.033초

사출금형 냉각회로 자동최적화를 위한 설계변수 감소 방안 (Reduction of Design Variables for Automated Optimization of Injection Mold Cooling Circuit)

  • 이병옥;최재혁;태준성
    • 한국생산제조학회지
    • /
    • 제18권4호
    • /
    • pp.417-422
    • /
    • 2009
  • The injection mold cooling circuit optimization was studied with a response surface method in the previous research. It took so much time to find an optimum solution for a large product due to an extensive amount of calculation time for the CAE analysis. In order to use the optimization technique in the actual design process, the calculation time should be much reduced. In this study, we tried to reduce the number of design variables with the concept of the close relationship between the depth and the distance of cooling channel. The optimum ratio of the distance to the depth of cooling channels for a 2-dimensional problem was 2.0 so that the optimum ratio was again sought out for 4 large automotive parts. Therefore, the number of design variables for the cooling circuit optimization can be reduced in half, resulting in much faster running time for the optimization as a design tool.

  • PDF

CO2 냉각모듈을 적용한 고곡률 성형품의 사출금형 급속냉각 (Rapid cooling of injection mold for high-curvature parts using CO2 cooling module)

  • 이세호;이호상
    • Design & Manufacturing
    • /
    • 제16권4호
    • /
    • pp.67-74
    • /
    • 2022
  • Injection molding is a cyclic process comprising of cooling phase as the largest part of this cycle. Providing efficient cooling in lesser cycle times is of significant importance in the molding industry. Recently, lots of researches have been done for rapid cooling of a hot-spot area using CO2 in injection molding. The CO2 flows under high pressure through small, flexible capillary tubes to the point of use, where it expands to create a snow and gas mixture at a temperature of -79℃. The gaseous CO2 removes heat from the mold and releases it into the atmosphere. In this paper, a CO2 cooling module was applied to an injection mold in order to cool a large area cavity uniformly and quickly, and the cooling performance of the injection mold was investigated. The product was a high-curvature molded part with a molding area of 300x100mm. Heat cartridges were installed in a stationary mold, and CO2 cooling module was inserted inside a movable mold. Through structural analysis, it was confirmed that the maximum deformation of mold with CO2 cooling module was 0.09mm. A CO2 feed system with a heat exchanger was used for cooling experiments. The CO2 was injected into the holes on both sides of the supply pipe of the cooling module and discharged through hexagon blocks to cool the mold. It took 5.8 seconds to cool the mold from an average temperature of 140℃ to 70℃. Through the experiment using CO2 cooling module, it was found that a cooling rate of up to 12.98℃/s and an average of 10.18℃/s could be achieved.

균일 냉각을 고려한 Thick-Wall 형상의 플라스틱 렌즈 쾌속 금형 제작 (Manufacturing of Rapid Tooling for Thick-Wall Plastic Lens Mold with Conformal Cooling Channel)

  • 박형필;차백순;이상용;최재혁;이병옥
    • Design & Manufacturing
    • /
    • 제1권1호
    • /
    • pp.27-32
    • /
    • 2007
  • In the optical application demand for high quality lens is increasing. Plastics lenses are demanded more than glass lenses for large size lenses as well as micro-size lenses. It is difficult to apply typical straight cooling channels of injection mold to lens molding due to its non-uniform temperature distribution. In this study, we manufactured molds for plastic lenses with the conventional cooling channels and conformal cooling channels produced by the DMLS process. We evaluated cooling performance for the 2 molds by injection molding experiment. Also, uniformity of the temperature distribution was tested by infrared camera and temperature monitoring. We confirmed that the cooling performance and temperature uniformity with the conformal cooling channels is much improved from the ones with the conventional. The cooling time with the conformal cooling channels was reduced 30% compared with the conventional cooling channels.

  • PDF

초미세 발포 사출공정에서 금형의 온도가 스킨층 두께와 충격강도에 미치는 영향 (Influence of Mold Temperature on the Thickness of a Skin Layer and Impact Strength in the Microcellular Injection Molding Process)

  • 이정주;차성운
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1630-1635
    • /
    • 2005
  • The microstructure of the parts made by the microcellular injection molding process influence properties, including impact strength, tensile strength and density of material. Microstructure of microcellular plastics is divided into core foaming region and solid skin region. Core foaming region is influenced by pressure drop rate, viscosity and cell coalescence. However, actual mechanism of the skin layers is not known despite its importance. The study on the skin layer is getting important because foaming rate of the plastics is determined by the thickness ratio of the skin layer. Especially in case of large molded part, control of the skin layer is needed because skin layer thickness is changed largely. Therefore it is necessary to study variation in skin layer thickness with processing parameters. In this paper, the influence of temperatures in the mold cavity on the skin layer s thickness was also addressed. In addition, the relationship between the temperature distributions across cavity of the mold with impact strength on parts made with the microcellular injection molding process was addressed. In addition, the method to predict the variation in skin layer thickness with mold temperature is discussed.

  • PDF

미세패턴 성형을 위한 사출 압축 성형 공정 기술 (Injection/compression molding for micro pattern)

  • 유영은;김태훈;김창완;제태진;최두선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.100-104
    • /
    • 2005
  • The injection molding is very effective process for various plastic products due to its high productivity. It is also good fur precise products like optical parts. Various thermoplastic materials are also available with this injection molding process. In recent, however, as the overall size of the product increases and micro or nano scale of patterns are applied to the products, we now have some problems such as low fidelity of the replication of the pattern, high molding pressure, or warpage from the in-mold stress. Injection/compression molding is studied to overcome those problems in molding large thin plate with micro pattern array on its surface. An injection compression mold is designed to 3 pieces mold for side gate. We install 4 pressure transducers and 9 thermocouples to measure the melt pressure and surface temperature in the cavity during the process. As a result, the maximum molding pressure for injection compression molding is reduced to 1/3 compared to injection molding and the uniformity of the pressure in the cavity is enhanced by about 15%.

  • PDF

시작차용 의장부품 성형을 위한 하이브리드 림 몰드 개발 (Development of Hybrid RIM Mold to Form Outfit-part for Prototype-cars)

  • 양화준;황부중;이석희
    • 한국정밀공학회지
    • /
    • 제18권3호
    • /
    • pp.75-83
    • /
    • 2001
  • RIM(Reaction Injection Molding) is a widely used method to manufacture middle-large size outfit-part for a prototype car. The main advantage of RIM is the capability of manufacturing a small number of prototype parts with less cost and lead time than injection molding which is the most popular method to manufacture plastic parts. Generally, epoxy resin and RTV(Room Temperature Vulcanization) silicon are used as mold materials for RIM, and the selection of mold materials is usually depended upon the industrial environment of manufactures and it decides overall mold making process and part quality. This paper suggests a new mold making process by consolidating the advantages of epoxy resin and RTV silicon based RIM mold to enhance the parts quality while reducing the manufacturing cost and time and shows the competitiveness of the suggested process compared with conventional methods.

  • PDF

마이크로 패턴 성형을 위한 인서트 코어 적용 µ-PIM 표준금형 개발에 관한 연구 (Development of µ-PIM standard mold with exchangable insert core in order to manufacture micro pattern)

  • 박치열;서찬열;김용대
    • Design & Manufacturing
    • /
    • 제11권3호
    • /
    • pp.29-34
    • /
    • 2017
  • Increased demand for parts with micro-pattern structure made of metals, ceramics, and composites in various fields such as medical ultrasonic sensors, CT collimators, and ultra-small actuator parts. Micro powder injection molding (PIM) is a technology for manufacturing micro size, high volume, complex, precision, net-shape components from either metal or ceramic powder. In the present study, a standard mold with a variable insert core capable of producing various micro patterns was investigated. An injection molding test was performed on a standard mold using a line type micro-pattern core having an aspect ratio of 2, a slenderness ratio of 70, a pattern size of $200{\mu}m$, and a pattern spacing of $150{\mu}m$. During the filling process, the deformation of the mold with large aspect ratio and slenderness ratio was analyzed by the experiment and the numerical simulation according to the position of the gate. We proposed a mold structure that minimizes mold deformation by gate modification and enables uniform pattern filling behavior.

친환경 소재를 이용한 화장품 쿠션 팩트 용기의 힌지 설계와 사출 성형 시뮬레이션 (Hinge Design and Injection Molding Simulation of Cosmetic Cushion Fact Container Using Eco-Friendly Materials)

  • 정성택;김현정;위은찬;이중배;김민수;백승엽
    • Design & Manufacturing
    • /
    • 제13권3호
    • /
    • pp.35-40
    • /
    • 2019
  • As the consumer market in the cosmetic, vehicle manufacturing and aerospace industries grows, the demand for manufacturing industries using on injection mold technology. Also, such manufacturing technology of metal machining is expensive, and the shape is limited. Cosmetic cushion fact products are divided into outer relevant to the exterior of the product and inner containers containing the actual contents. In the case of the inner container, it needs to be combined with the upper and lower cases. As environmental regulations are strengthened internationally, the use of a large number of component parts can result in significant losses in recycling and economics. Therefore, this study aims to perform injection molding analysis through injection molding simulation to develop a cushion fact container that can be recycled through the unification of products and materials using polypropylene to cope with environmental regulations. In the case of injection molding conditions, Injection Time(sec): 4.5, Cooling Time(sec): 13, Resin Temperature($^{\circ}C$): 240, and Pressure(MPa): 30 were determined. The results of injection molding simulation according to the two design methods were compared with the sync mark which shows the problem of filling and injection molding.

미세채널 전사성 향상을 위한 사출성형 공정최적화 기초연구 (A study on the process optimization of injection molding for replicability enhancement of micro channel)

  • 고영배;김종선;유재원;민인기;김종덕;윤경환;황철진
    • Design & Manufacturing
    • /
    • 제2권1호
    • /
    • pp.45-50
    • /
    • 2008
  • Micro channel is to fabricate desired pattern on the polymer substrate by pressing the patterned mold against the substrate which is heated above the glass transition temperature, and it is a high throughput fabrication method for bio chip, optical microstructure, etc. due to the simultaneous large area patterning. However, the bad pattern fidelity in large area patterning is one of the obstacles to applying the hot embossing technology for mass production. In the present study, stamper of cross channel with width $100{\mu}m$ and height $50{\mu}m$ was manufactured using UV-LiGA process. Micro channel was manufactured using stamper manufactured in this study. Also replicability appliance was evaluated for micro channel and factors affected replicability were investigated using Taguchi method.

  • PDF