• Title/Summary/Keyword: large holes

Search Result 253, Processing Time 0.027 seconds

Analysis of Chemical Composition, Microstructure and Hydroxyapatite Structure for Mouse Teeth (생쥐 치아의 화학적 조성, 미세구조 및 Hydroxyapatite 구조 분석)

  • Kim, Eun-Kyung;Jeon, Tae-Hoon;Kim, Chang-Yeon;Nam, Seung-Won;Song, Kyung;Lee, Sang-Gil;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.40 no.3
    • /
    • pp.147-154
    • /
    • 2010
  • The aim of this study is to determine microstructure, chemical composition and crystal structure of hydroxyapatite for mouth teeth using optical microscopy and electron microscopy as well as electron probe micro-analysis (EPMA). Enamel, a protective cover to the teeth, consisted of rods oriented in regular and had relatively higher crystallinity and Ca component. In contrast, dentin showed a sponge-like microstructure with circular holes which were passages of dentinal tubules, and had higher Mg component than the enamel region due to its higher organic content. Hydroxyapatite crystals appeared as large rods in enamel, but as small needles in dentin. Their electron diffraction patterns were different by their crystallinity as well as by the organic content of the matrix.

The Circular Center Cut with Large Empty Hole & Pre-Splitting in Tunnel Blasting (터널에서 대구경 무장약공과 선균열을 이용한 심빼기 공법에 관한 연구)

  • 김재홍;임한욱
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.248-256
    • /
    • 2001
  • The cylindrical cut is most frequently used in tunnel blast regardless of their dimensions. In this study the new parallel cut is proposed to raise advance per round, which is considered to be an elevation of the traditional cylinder cuts. The general geometric pattern of a new cut with parallel blast holes is proposed. The detailed burden and spacing between the central blasthole and those of the four section are also given. The blast results between new cut and traditional cylinder cut are given. The main results of this study are as follows. 1) The average advances per rounds in new cuts can reach 99.5% of drilling length. That of traditional cylinder cuts are known approximately 90∼95% 2) Specific charge weight of new cut compare to that of cylinder cut is approximately reduced 5% from 1.363 to 1.297 kg/㎥ 3) Specific drilling rate is also reduced 8% from 2.393 to 2.130 m/㎥ 4) Vibrations, fly rock, and fragmentation produced by the new blast are to be proved superior to those of the traditional cylinder cuts.

  • PDF

Current Status of the Quasar Selections at z > 5 from Infrared Medium-deep Survey

  • Jeon, Yi-Seul;Im, Myung-Shin;Park, Won-Kee;Kim, Ji-Hoon;Jun, Hyun-Sung;Choi, Chang-Su;Kim, Doh-Yeong;Kim, Du-Ho;Hong, Ju-Eun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.63.2-63.2
    • /
    • 2011
  • We describe the Infrared Medium-deep Survey (IMS), a survey of quasars in the early universe beyond z=5. IMS uses multi-wavelength archival data such as SDSS, CFHT-LS, UKIDSS, and SWIRE, which provide deep images over wide area enough for searching of high redshift bright quasars. In addition, we are carrying out J-band imaging survey with the depth of 23AB at UKIRT for up to 200 $deg^2$, of which 50 $deg^2$ is covered so far. For the quasar candidates at z~5.5, we are making observations with custom-made filters, which are more efficient to make robust quasar candidate samples in this redshift range. Because of the deeper survey depth and the unique methods, our IMS can provide a large number of high redshift quasars comparing with ongoing high redshift bright quasar survey. The high redshift quasars we confirm will give us with clues of the growth of super massive black holes and the metal enrichment history in the early universe.

  • PDF

An Ultrastructural Study on the Glochidium and Glochidial Encystment on the Host Fish (Glochidium larva 의 구조와 숙주어류에서의 피양형태에 관한 미세구조적 연구)

  • Jeong, Kye-Heon
    • The Korean Journal of Malacology
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 1989
  • A scanning electron microscopic study on the glochidium and glchidial encystment of Anodonta grandis on the guppy was conducted. The shape of the glochidium is apparently triangular and its averge size is 0.45mm X0.4mm when closed, The two glochidial shell valves are of the same size, kept together by a ligament of 120${\mu}{\textrm}{m}$ in length and 7 ${\mu}{\textrm}{m}$ in width. Each of the glochidial shell valves has a 16 ${\mu}{\textrm}{m}$ long hook sitdded with many spines on the superior face. A large area to the apex of the valve surrounding the base of the hook is provided with numerous small spines which become progressively smaller towards the periphery of the area, The external surface of the glochidial shell valve is covered with numerous small processes showing successive change in the shape and the pattern of destribution by part. Besides the processes, there are a number of niches scattered all over the exterior surface. The glochidial shell valve has two layers. One is the outer thin membrane bearing the processes and the niches and the others is the inner layer bearing numerous holes which any accessory structure and 2.65 ${\mu}{\textrm}{m}$ in diameter, emerges from a canal located at center of ventral plate of the mamtle, A total of three types of the hair cells are observed. In present artificial infection of the glochidium to the guppy, it took about three to four hours to complete an early cysts, During the period of encystment, The epithelial cells of the host fish actively migrated toward the attached glochidium and covered it.

  • PDF

A High Power SP3T MMIC Switch (고출력 SP3T MMIC 스위치)

  • 정명득;전계익;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.782-787
    • /
    • 2000
  • The monolithic single-pole three-throw(SP3T) GaAs PIN diode switch circuit for the broadband and high power application was designed, fabricated and characterized. To improve the power handling capability, buffer layers of the diode employ both low temperature buffer and superlattice buffer. The diode show the breakdown voltage of 65V and turn-on voltage of 1.3V. The monolithic integrated switch employed microstrip lines and backside via holes for low-inductance signal grounding. The vertical epitaxial PIN structure demonstrated better microwave performance than planar type structures due to lower parasitics and higher quality intrinsic region. As the large signal characteristics of the fabricated SP3T MMIC switch, the insertion loss was measured less than 0.6dB and the isolation better than 50dB when the input power was increased from 8dBM to 32dBm at 14.5GHz.

  • PDF

Electrical and Optical Study of PLED & OLEDS Structures

  • Mohammed, BOUANATI Sidi;SARI, N. E. CHABANE;Selma, MOSTEFA KARA
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.124-129
    • /
    • 2015
  • Organic electronics are the domain in which the components and circuits are made of organic materials. This new electronics help to realize electronic and optoelectronic devices on flexible substrates. In recent years, organic materials have replaced conventional semiconductors in many electronic components such as, organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaic (OPVs). It is well known that organic light emitting diodes (OLEDs) have many advantages in comparison with inorganic light-emitting diodes LEDs. These advantages include the low price of manufacturing, large area of electroluminescent display, uniform emission and lower the requirement for power. The aim of this paper is to model polymer LEDs and OLEDs made with small molecules for studying the electrical and optical characteristics. The purpose of this modeling process is, to obtain information about the running of OLEDs, as well as, the injection and charge transport mechanisms. The first simulation structure used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2'-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode with a high work function, usually an indium tin oxide (ITO) substrate, and a cathode with a relatively low work function, such as Al. Electrons will then be injected from the cathode and recombine with electron holes injected from the anode, emitting light. In the second structure, we replaced MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). This simulation uses, the Poole-Frenkel -like mobility model and the Langevin bimolecular recombination model as the transport and recombination mechanism. These models are enabled in ATLAS- SILVACO. To optimize OLED performance, we propose to change some parameters in this device, such as doping concentration, thickness and electrode materials.

Analytical Models of Beam-Column joints in a Unit Modular Frame (단위 모듈러 구조체의 보-기둥 접합부 해석 모델)

  • Choi, Kyung-Suk;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.663-672
    • /
    • 2014
  • Recently, modular structural systems have been applicable to building construction since they can significantly reduce building construction time. They consists of several unit modular frames of which each beam-column joint employs an access hole for connecting unit modular frames. Their structural design is usually carried out under the assumption that their load-carrying mechanism is similar to that of a traditional steel moment-resisting system. In order to obtain the validation of this assumption, the cyclic characteristics of beam-column joints in a unit modular frame should be investigate. This study carried out finite element analyses(FEM) of unit modular frames to investigate the cyclic behavior of beam-column joints with the structural influence of access holes. Analysis results show that the unit modular frames present stable cyclic response with large deformation capacities and their joints are classified into partial moment connections. Also, this study develops a simple spring model for earthquake nonlinear analyses and suggests the Ramberg-Osgood hysteretic rule to capture the cyclic response of unit modular frames.

Characteristics of Copper Film Fabricated by Pulsed Electrodeposition with Additives for ULSI Interconnection (펄스전착법과 첨가제를 사용하여 전착된 ULSI배선용 구리박막의 특성)

  • Lee Kyoung-Woo;Yang Sung-Hoon;Lee Seoghyeong;Shin Chang-Hee;Park Jong-Wan
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.237-241
    • /
    • 1999
  • The characteristics of copper thin films and via hole filling capability were investigated by pulsed electrodeposition method. Especially, the effects of additives on the properties of copper thin films were studied. Copper films, which were deposited by pulsed electrodeposition using commercial additives, had low tensile stress value under 83.4 MPa and high preferred Cu (111) texture. Via holes with $0.25{\mu}m$ in diameter and 6 : 1 aspect ratio were successfully filled without any defects by superfilling. It was observed that copper microstructure deformed by twining. After heat treatment at $500^{\circ}C$ for 1 k in vacuum furnace, grain size was 1 or 2 times as large as film thickness and the bamboo structure was formed. Heat treated copper films showed good resistivities of $1.8\~2.0{\mu}{\Omega}{\cdot}cm$.

Synthesis of CdS with Graphene by CBD(Chemical Bath Deposition) Method and Its Photocatalytic Activity

  • Pawar, R.C.;Lee, Jin-Yong;Kim, Eun-Jeong;Kim, Hyungsub;Lee, Caroline Sunyong
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.504-507
    • /
    • 2012
  • Synthesis of RGO (reduced graphene oxide)-CdS composite material was performed through CBD (chemical bath deposition) method in which graphene oxide served as the support and Cadmium Sulfate Hydrate as the starting material. Graphene-based semiconductor photocatalysts have attracted extensive attention due to their usefulness for environmental and energy applications. The band gap (2.4 eV) of CdS corresponds well with the spectrum of sunlight because the crystalline phase, size, morphology, specic surface area and defects, etc., of CdS can affect its photocatalytic activity. The specific surface structure (morphology) of the photocatalyst can be effective for the suppression of recombination between photogenerated electrons and holes. Graphene (GN) has unique properties such as a high value of Young's modulus, large theoretical specific surface area, excellent thermal conductivity, high mobility of charge carriers, and good optical transmittance. These excellent properties make GN an ideal building block in nanocomposites. It can act as an excellent electron-acceptor/transport material. Therefore, the morphology, structural characterization and crystal structure were observed using various analytical tools, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. From this analysis, it is shown that CdS particles were well dispersed uniformly in the RGO sheet. Furthermore, the photocatalytic property of the resulting RGO-CdS composite is also discussed in relation to environmental applications such as the photocatalytic degradation of pollutants. It was found that the prepared RGO-CdS nanocomposites exhibited enhanced photocatalytic activity as compared with that of CdS nanoparticles. Therefore, better efficiency of photodegradation was found for water purification applications using RGO-CdS composite.

Analysis of the Effect on the Process Parameters for the Thin Ceramic Plate in the Ceramic Injection Molding (판상제품의 세라믹 사출 시 공정변수 영향 분석)

  • Kim, Jinho;Hong, Seokmoo;Hwang, Jihoon;Lee, Jongchan;Kim, Naksoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2587-2593
    • /
    • 2014
  • Ceramic Injection Molding (CIM) is one of wide used processes in industry field and the applications are gradually being expanded to parts of medical and electric devices. In this study, the CIM process were analyzed with FEM and process parameters were studied and analyzed the effect on product quality. The shape of simple flat plate was compared to the shapes with the hole, with the round corner portion or with the side wall portion. If there are holes then the hole around the uneven density distribution and the defects such as weld lines could be occurred. The Large radius of the corners of the product give good formability and fluidity. Not only the shape parameters of product but also the process parameters during CIM are studied. The simulation results showed that the process parameters of temperature, initial fractions and velocity are important design parameters to improve the quality of products.