• Title/Summary/Keyword: large electric field

Search Result 376, Processing Time 0.028 seconds

Study on Heat Generation of a Bulk HTS for Application to a 100 kWh SFES Superconductor Bearing

  • Jung, S.Y.;Lee, J.P.;Han, Y.H.;Han, S.C.;Jeong, N.H.;Ko, J.S.;Jeong, S.K.;Sung, T.H.
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.122-126
    • /
    • 2006
  • This paper presents experimental and numerical investigation on heat generation of a bulk HTS for application to a 100 kWh Superconductor Flywheel Energy Storage System(SFES) bearing. An experimental device is manufactured to reproduce varying magnetic field conditions that a bulk HTS may experience during the operation of the 100 kWh SFES. The bulk HTS is directly cooled by a cryocooler while the heat is generated by the eddy currents created by varying magnetic fields induced by a coil. In order to design the cryocooling system for the 100 kWh SFES project, a preliminary experiment to investigate the actual cooling load variation under AC magnetic field has been carried out. In the experiment, two different copper holders were designed and tested. Several temperature sensors were installed on each component of the assembly and the temperatures were measured for several operating conditions of the 100 kWh SFES. The experimental investigation on the thermal response of the bulk HTS and its holder is considered to be a valuable step fur the successful materialization of a large-scale SFES.

  • PDF

Electro-thermal analysis of contacts and connections in VCB under high electric current by finite element methods (유한요소법에 의한 VCB 접속부의 대전류에 대한 전열해석)

  • Kang, Woo-Jong;Huh, Hoon;Kang, Kyeong-Rok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.715-722
    • /
    • 1998
  • A large electric system of a vacuum circuit breaker(VCB) has been studied for the electro-thermal analysis by finite element methods. Since the heat generation in VCB causes not only energy loss but deterioration of the VCB system with oxidization of parts, the overheating of the system must be prevented. For the analysis, a finite element formulation is derived for both electric analysis and thermal analysis that are coupled together. Two sets of formulations are uncoupled after finite dimensional approximation. First, the electric potential is obtained for the entire field and scaled to the given electric current. The electric field obtained is then used to calculate the heat generation in the VCB system including contacts and connections for the calculation of the temperature distribution in the entire domain. The finite element analysis is carried out to study the effect of shapes and locations of contacts and connections. From the results, the existing VCB has been modified to enhance its capacity with reduction of heat generation and temperature elevation.

Fabrication of CNT Electron Source for Field Emission Displays

  • Nakata, S.;Sawada, T.;Fujikawa, M.;Nishimura, K.;Abe, F.;Hosono, A.;Watanabe, S.;Yamamuro, T.;Shen, Z.;Suzuki, Y.;Okuda, S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1012-1015
    • /
    • 2005
  • We have developed the technique of fabricating triode structure with simple stacking method using a polymer insulator that is suitable for large panel and the activation method after the fabrication. By the techniques, a test panel was manufactured and proves good emission property and uniformity.

  • PDF

Low Temperature Sintering of (Bi1/2Na1/2)TiO3-SrTiO3 Ceramics and Their Ferroelectric and Piezoelectric Properties (BNT-ST 세라믹스의 저온 소결과 강유전 및 압전 특성)

  • Hyunhee Kwon;Ga Hui Hwang;Chae Il Cheon;Ki-Woong Chae
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.238-245
    • /
    • 2023
  • 0.75(Bi1/2Na1/2)TiO3-0.25SrTiO3 (BNT-25ST) ceramics with high densities were successfully prepared at a sintering temperature of 1,000℃ by adding a mixture of 1 mol% CuO and 0.5 mol% Na2CO3 or 0.5 mol% CuO and 0.25 mol% Na2CO3. Double polarization-electric field (P-E) hysteresis curves and sprout-shaped bipolar strain-electric field (S-E) hysteresis curves with small negative strains were observed in the pristine and CuO-added BNT-25ST ceramics whereas the Na2CO3-added sample showed similar P-E and S-E curves to a typical ferroelectric. The pristine BNT-25ST ceramics showed an extremely large strain and a large-signal piezoelectric strain constant (d33*): 0.287 % at 80 kV/cm and 850 pm/V at 20 kV/cm. Similar values, 0.248 % at 80 kV/cm and 655 pm/V at 20 kV/cm, were obtained in the CuO-added sample. However, the pristine and CuO-added samples showed large hysteresis in unipolar S-E curves at an electric field of less than 20 kV/cm. The Na2CO3-added sample showed smaller values of the strain and d33* but displayed a linear change and small hysteresis in the unipolar S-E curve. The co-added sample with CuO and Na2CO3 displayed intermediate P-E and S-E hysteresis curves.

Three-Dimensional Electric Field Calculation around Substation Busbars Using Adaptive Technique (적응적 기법을 이용한 전력소 모선하의 3차원 전계분포 해석)

  • Myung, Sung-Ho;Lee, Byeong-Yoon;Park, Jong-Keun;Kim, Suk-Won;Kim, Eung-Sik;Lee, Jae-Bok;Ha, Tae-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1892-1894
    • /
    • 1996
  • This paper presents optimal charge arrangement through potential error analysis. In order to decide the number of charges per conductor for a large system, adaptive simulation charge arrangement technique has been proposed. "Grouping" technique which means to divide analysis domain into two groups has been described through field error analysis. By this method, the size of matrix to calculate E field at a calculation point is reduced remarkably. The proposed method is applied to the electric field calculation around the Substation busbars.

  • PDF

Electrical Properties and Self-poling Mechanism of CNT/PVDF Piezoelectric Composite Films Prepared by Spray Coating Method

  • Lee, Sunwoo;Jung, Nak-Chun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.256-256
    • /
    • 2013
  • Carbon nanotubes (CNT) / polyvinylidene fluoride (PVDF) piezoelectric composite films for nanogenerator devices were fabricated by spray coating method. When the CNT/PVDF mixture solution passes through the spray nozzle with small diameter by the compressed nitrogen gas, electric charges are generated in the liquid by a triboelectric effect. Then randomly distributed ${\beta}$ phase PVDF film could be re-oriented by the electric field resulting from the accumulated electrical charges, and might be resulted in extremely one-directionally aligned ${\beta}$ phase PVDF film without additional electric field for poling. X-ray diffraction patterns were used to investigate crystal structure of the CNT/PVDF composite films. It was confirmed that they revealed extremely large portion of the ${\beta}$ phase PVDF crystalline in the film. Therefore we could obtain the poled CNT/PVDF piezoelectric composite films by the spray coating method without additional poling process. Charge accumulation and resulting electric field generation mechanism by spray coating method were shown in Fig. 1. The capacitance of the CNT/PVDF films increased by adding CNTs into the PVDF matrix, and finally saturated. However, the I-V curves didn't show any saturation effect in the CNT concentration range of 0~4 wt%. Therefore we can control the performance of the devices fabricated from the CNT/PVDF composite film by adjusting the current level resulted from the CNT concentration with the uniform capacitance value.

  • PDF

Development of Large-sized YBCO High Temperature Superconductor Bulk Magnets and Actuator (대면적 YBCO 고온 초전도 벌크 자석 및 조작기 개발)

  • Han, Sang-Chul;Park, Byung-Jun;Jung, Se-Yong;Han, Young-Hee;Lee, Jong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.450-455
    • /
    • 2015
  • For the practical application of a YBCO superconductor bulk, the superconductor bulk magnet with high magnetic field on a large area surface should be fabricated. To make this, YBCO single crystal bulks with fine $Y_2BaCuO_5$(Y211) particles have been prepared by the top-seed melt growth(TSMG) method with $YBa_2Cu_3O_x$, $Y_2O_3$, and $CeO_2$ mixing precursor. By using $Y_2O_3$ instead of $Y_2BaCuO_5$ as precursor, the manufacturing process became simpler and more economical. The microstructures, trapped field and critical current density of the various conditioned YBCO bulks have been observed, analyzed and measured. The different characteristic values of the several samples have been analyzed from the viewpoint of their microstructures. We have developed a $8{\times}12cm$ size superconductor bulk magnet, up to 3 T class, by using the 4 T class-high field superconducting magnetizer and confirmed the applicability of the transmission level circuit breakers by measuring the strength and speed of the superconductor bulk magnet actuator.

Analysis of the Magnetic Field and Eddy Current Characteristics in Isolated Phase Bus System (상분리 모선의 자계 및 와전류 특성 해석)

  • Kim, Jin-Su;Ha, Deok-Yong;Choe, Seung-Gil;Gang, Hyeong-Bu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.10
    • /
    • pp.509-516
    • /
    • 2001
  • Isolated phase bus(IPS) has a special structure for carrying large current generated by a generator to a main transformer. In the analysis of IPB, the understanding of the magnetic field distribution generated by large current is important. Especially, while the bus conductor current is flowing, almost same amount of current as bus conductor current is induced in the enclosures under the influence of time varying magnetic field, and therefore the large electric loss and the deterioration of insulating capability might occur due to Joule heating effect. Hence for the optimal design of IPB satisfying the condition to minimize the loss, the accurate analysis of magnetic field distribution and the eddy current characteristics of three phase isolated phase bus have been investigated. In the analysis of time varying magnetic field, instead of finite difference method(FDM) which is generally used, finite element method with phasor concept is investigated under the assumption that the bus current is purely sinusoidal. The characteristics is studied along the phase angle by comparing the effect of eddy current on the magnetic field distribution with the case that eddy current is not considered, and also the effect of material, thickness and radius of enclosure on the eddy current distribution is discussed.

  • PDF

Characteristic for the Near Field of Rectangle Loop Antenna using Optical Electric-Field Sensor (광전계 센서를 이용한 구형 Loop Antenna의 근접전계 특성)

  • 이주현;도쿠다마사미추;하덕호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.3
    • /
    • pp.217-225
    • /
    • 2003
  • In this paper, in order to investigate the near field distribution characteristic of the Loop Antenna we simulated and measured the near field of a Loop Antenna using optical electric-field sensor in a large Chamber(8.5 m x 7 m x 7 m). The simulation methods were used MoM for frequency domain and FDTD for time domain. From the analysis results, it can be seen that the simulation and measurement results are very aggregated, and the optical electric-field sensor is a certificate of validity. In frequency domain, in case of the optical sensor with vertical polarization is located above the near vertical line of the Loop Antenna the signal strength level is more 15 ㏈ than with horizontal polarization. But in case of the optical sensor located above horizontal line of the Loop Antenna, signal strength level is not different. And, in the time domain, although input signal is positive, in the case of the optical sensor with vertical polarization is located above horizontal line of the Loop Antenna, it can be seen that the received pulse shape is negative.

Determination of the voltage distribution in the external electrode fluorescent lamps for the backlight unit of large-size LCD

  • Choi, Jae-Young;Kim, Young-Youb;Ko, Jae-Hyeon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1374-1377
    • /
    • 2006
  • The voltage distribution of an external electrode fluorescent lamp(EEFL) having a gas pressure of 50 torr and a gas composition of Ne:Ar with a ratio of 90:10 has been estimated by varying the distance between the two external electrodes and monitoring the change of the lamp voltage. The estimated voltage gradient, which represents the electric field in the positive column of the EEFL, was very sensitive to the electrode area of EEFL and was in the range of $13\;{\sim}\;27\;V/cm$ at the electrode length of $15\;{\sim}\;31\;mm$. Changing the lamp current in the range $3\;{\sim}\;5\;mA$ did not make noticeable difference in the electric field of the positive column. Theses results may serve as basic data for the optimization of electric and optic characteristics of EEFL.

  • PDF