• Title/Summary/Keyword: large electric field

Search Result 376, Processing Time 0.027 seconds

Study of the Electro-Optic Characteristics Depending on Electric Characteristic of the Black Matrix in a Homogeneous Liquid Crystal Cell Driven by Fringe-Electric Field (프린즈 전기장에 의해 구동되는 수평 배향 액정셀에서 black matrix의 전기적 특성이 셀의 전기광학 특성에 미치는 영향에 관한 연구)

  • 김미숙;김향율;고재완;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1008-1013
    • /
    • 2003
  • We have studied the effect of black matrix (BM) according to the dielectric anisotropy of liquid crystals (LCs) for a homogeneously aligned LC cell driven by fringe-electric field. The results show that for a LC with positive dielectric anisotropy (+LC) there is a large transmittance change when using a conductive BM, whereas the transmittance change is low for a LC with negative dielectric anisotropy (-LC). The conductive BM existing on top substrate produces vertical electric field, which makes the LC molecules be tilt upward from the substrate and have small twist angle for the +LC. However, for the -LC the conductive BM affects the LC distribution only slightly due to characteristic of the -LC orienting perpendicular to the field. Therefore, for the +LC the electro-optic characteristics are strongly dependent on conductivity of the BM on top substrate in a homogeneous liquid crystal cell driven by fringe-electric field.

Effect of Electric Field Concentration by Electrode Patterning on the Incipient Piezoelectric Strain Properties of Lead-Free Piezoceramics

  • Kang, Woo-Seok;Hong, Chang-Hyo;Lee, Young-Jin;Choi, Gangho;Shin, Dong-Jin;Lim, Dong-Hwan;Jeong, Soon-Jong;Jo, Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.549-557
    • /
    • 2019
  • More than two decades of world-wide research efforts have resulted in several classes of potentially important materials. Among them are incipient piezoelectrics, which are especially useful for actuator applications. However, relatively large electric fields are required for activating the large incipient electromechanical strains. So far, many attempts have been made to reduce the required electric field by intentionally inhomogenizing the electric field distribution in the microstructure through core-shell and composite approaches. Here, we show that electric field concentration can be realized simply by adjusting electrode patterns. We have investigated the effect of electrode patterning on the incipient electromechanical strain properties of an exemplarily chosen lead-free relaxor system, revealing that electrode patterning does have a significant role on the strain properties of the given lead-free relaxor system. We believe that this approach would make a new strategy for ones to consider bringing the functional properties of electroceramics beyond their conventional limit.

A Study of PWM Inverter for Field Control on Large Synchronous Generator (대형 동기 발전기 계자제어를 위한 PWM 인버터에 관한 연구)

  • Ryu, Ho-Seon;Lee, Joo-Hyun;Lim, Ick-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.958-959
    • /
    • 2006
  • For the life extension of Jeju thermal power plant, digital PWM excitation system was replaced by KEPRI. This system consist of TMR(Triple Modular Redundant) controller, dual PWM power inverter for field current control and MMI etc. The Performance test during the commissioning verified the reliability of digital PWM excitation system and recently, this system has been operated successfully.

  • PDF

Micro-gap DBD Plasma and Its Applications

  • Zhang, Zhitao;Liu, Cheng;Bai, Mindi;Yang, Bo;Mao, Chengqi
    • Journal of the Speleological Society of Korea
    • /
    • no.76
    • /
    • pp.37-42
    • /
    • 2006
  • The Dielectric Barrier Discharge (DBD) is a nonequilibrium gas discharge that is generated in the space between two electrodes, which are separated by an insulating dielectric layer. The dielectric layer can be put on either of the two electrodes or be inserted in the space between two electrodes. If an AC or pulse high voltage is applied to the electrodes that is operated at applied frequency from 50Hz to several MHz and applied voltages from a few to a few tens of kilovolts rms, the breakdown can occur in working gas, resulting in large numbers of micro-discharges across the gap, the gas discharge is the so called DBD. Compared with most other means for nonequilibrium discharges, the main advantage of the DBD is that active species for chemical reaction can be produced at low temperature and atmospheric pressure without the vacuum set up, it also presents many unique physical and chemical process including light, heat, sound and electricity. This has led to a number of important applications such as ozone synthesizing, UV lamp house, CO2 lasers, et al. In recent years, due to its potential applications in plasma chemistry, semiconductor etching, pollution control, nanometer material and large area flat plasma display panels, DBD has received intensive attention from many researchers and is becoming a hot topic in the field of non-thermal plasma.

Three-Dimensional Finite Element Analysis of a Vacuum Interrupter (진공 인터럽터의 3차원 유한요소해석)

  • Choi, Seung-Kil;Kang, Hyung-Boo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.10
    • /
    • pp.693-698
    • /
    • 1999
  • Vacuum interrupters have a special asymmetric electrode structure to generate an magnetic field and consequently to increase the interrupting ability. Accordingly 2-dimensional analysis has a large analysis error because radial flux can not be considered. In this paper, in order to analyse the electric field distribution of a vacuum interrupter with arc shield more accurately, 3-dimensional finite element method(FEM) is used. The induced electric potentials of floating shield was increased with the gap distance, which is because the relative position of shield is closer to the fixed contact so that the capacitance distribution inside interrupter is varied. The calculated results also show that the induced potential of shield causes electric field distortion so that the maximum value of electric field in a vacuum interrupter with arc shield is higher than that without one.

  • PDF

Visualization of Internal Electric Field on Plasma (플라즈마 내부 전기장 가시화)

  • Shin, Han Sol;Yu, Tae Jun;Lee, Kun
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.1
    • /
    • pp.80-85
    • /
    • 2016
  • It costs high in both memory usage and time consuming to sample the space to compute charge density and calculate electric field on that with large size of plasma data. In real-time and interactive application, accelerating the compute time is critical problem. In this paper, we suggest new method to visualize electric field by using convolution theorem, and the parallel computing to accelerate computing time by using GPGPU. We conduct a simulation that compare running time between the methods with convolution and without convolution. We discussed the method of visualization of multivariate data in three dimensional space using colored volume rendering and surface construction.

The Effect of Compressing ER Electrode on Electrorheological Properties of Anhydrous ER Fluids (ER 유체용 압축전극이 ER 유체의 전기유변학적 특성에 미치는 영향)

  • Ahn, Byeng-Gil
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.16-23
    • /
    • 2002
  • For increasing the yield stress of ER fluids, the compressing ER electrode was developed and the compressing electrorheological (ER) behavior of anhydrous ER fluids in silicone oil of phosphorous ester cellulose powder was investigated. Under constant electric field, not only the current density but also the yield stress of anhydrous ER fluids were studied as varying the compressing length of ER electrode distance. From the experimental results the compressing of ER electrode had a large influence to the ER properties of anhydrous ER fluids. The current density was proportional to the compressing length of ER electrode under constant electric field and volume fraction also tile compressing yield stress was proportional to the volume fraction of dispersed particles under constant electric field and compressing length. When the ER electrode was compressed with 150mm after charging the electric field, 4 kV, tile yield stress of phosphoric ester cellulose ER fluids increased to thirteen times comparing with the yield stress measured at normal electrode.

The Effect of Compressing ER Electrode on the Electrorheological Properties of ER Fluids (ER 유체용 압축전극이 ER 유체의 전기유변학적 특성에 미치는 영향)

  • 안병길
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.138-145
    • /
    • 2001
  • For increasing the yield stress of ER fluids, the compressing ER electrode was developed and the compressing electrorheological (ER) behavior of anhydrous ER fluids in silicone oil of phosphorous ester cellulose powder was investigated. Under constant electric field, not only the current density but also the yield stress of anhydrous ER fluids were studied as varying the compressing length of compressing ER electrode. From the experimental results, the compressing of ER electrode had a large influence to the ER properties of anhydrous ER fluids. The current density was proportional to the compressing length of ER electrode under constant electric field and volume fraction also the compressing yield stress was proportional to the volume fraction of dispersed particles under constant electric field and compressing length. When the ER electrode was compressed with 150mm after charging the electric field, 4 kV, the yield stress of phosphoric ester cellulose ER fluids increased to thirteen times comparing with the yield stress measured at normal electrode.

  • PDF

A Study on the Measurements of Parameters Affecting the Breakdown Mechanism of a Large Air Spacing (이격거리가 큰 전극의 공기 절연파괴에 영향을 미치는 인자측정에 관한연구)

  • Cho, Yun-Ok;Choi, Young-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.756-760
    • /
    • 1988
  • The paper presents the measurement results on the parameters affecting the breakdown mechanism of a large air spacing under switching impulse voltages. Measured parameters are the velocities of leader channels, predischarge currents, electric charges injected into the rod-plane air gap and electric field intensities on the plane. For the 3m air gap under switching impulse voltages, the velocities of leader channel have been measured to be of 1cm/${\mu}s$ - 5cm/${\mu}s$, electric field intensity of 2kv/cm, predischarge current of 1.2A - 1.6A, the charges injected into the air gap of 11 - 40 ${\mu}$C for 400-887kV impulse voltages.

  • PDF

A Study on the Measurements of Discharge Parameters in Case of the Switching Impulse Breakdown of a Large Air Spacing (이격거리가 큰 전국의 공기절연파괴 현상시 발생하는 인자측정에 관한 연구)

  • 최영욱;조연옥
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.12
    • /
    • pp.1290-1295
    • /
    • 1991
  • The paper presents the measurement results on the parameters affecting the breakdown mechanism of a large air spacing under switching impulse voltages. Measured parameters are the velocities of leader channels, predischarge currents, electric charges injected into the rod-plane air gap and electric field intensities on the plane. For the 3m air gap under switching impulse voltages, the velocities of leader channel have been measured to be of 1cm/x10S0-6Ts - 5cm/x10S0-6Ts, electric field intensity of 2kv/cm, predischarge current of 1.2-1.6A, the charges injected into the air gap of 11-40x10S0-6TC for 400-887kV impulse voltages.

  • PDF