• Title/Summary/Keyword: large eddy simulation

Search Result 525, Processing Time 0.025 seconds

The study of Flow Structure in a Mixing Tank for Different Reynolds Numbers Using LES (대형 와 모사를 통한 레이놀즈 수 증가에 따른 혼합 탱크 내의 유동 구조의 연구)

  • Yoon, Hyun-Sik;Chun, Ho-Hwan;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1290-1298
    • /
    • 2003
  • The stirred tank reactor is one of the most commonly used devices in industry for achieving mixing and reaction. Here we report on results obtained from the large eddy simulations of flow inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius. Stereoscopic PlY measurements (Hill et al. $^{(1)}$) along with the theoretical model of the impeller-induced flow (Yoon et al. $^{(2)}$) were used in defining the impeller-induced flow as superposition of circumferential, jet and tip vortex pair components. Large eddy simulation of flow in a stirred tank was carried out for the three different Reynolds numbers of 4000, 16000 and 64000. The effect of different Reynolds numbers is well observed in both instantaneous and time averaged flow fields. The instantaneous and mean vortex structures are identified by plotting an isosurfaces of swirling strength for all Reynolds numbers. The Reynolds number dependency of the non-dimensional eddy viscosity, resolved scale and subgrid scale dissipations is clearly shown in this study.

Validation of RANS models and Large Eddy simulation for predicting crossflow induced by mixing vanes in rod bundle

  • Wiltschko, Fabian;Qu, Wenhai;Xiong, Jinbiao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3625-3634
    • /
    • 2021
  • The crossflow is the key phenomenon in turbulent flow inside rod bundles. In order to establish confidence on application of computational fluid dynamics (CFD) to simulate the crossflow in rod bundles, three Reynolds-Averaged Navier Stokes (RANS) models i.e. the realizable k-ε model, the k-ω SST model and the Reynolds stress model (RSM), and the Large Eddy simulations (LES) with the Wall-Adapting Local Eddy-viscosity (WALE) model are validated based on the Particle Image Velocimetry (PIV) flow measurement experiment in a 5 × 5 rod bundle. In order to investigate effects of periodic boundary condition in the gap, the numerical results obtained with four inner subchannels are compared with that obtained with the whole 5 × 5 rod bundle. The results show that periodic boundaries in the gaps produce strong errors far downstream of the spacer grid, and therefore the full 5 × 5 rod bundle should be simulated. Furthermore, it can be concluded, that the realizable k-ε model can only provide reasonable results very close to the spacer grid, while the other investigated models are in good agreement with the experimental data in the whole downstream flow in the rod bundle. The LES approach shows superiority to the RANS models.

Large eddy simulations of the flow around a circular cylinder: effects of grid resolution and subgrid scale modeling

  • Salvatici, E.;Salvetti, M.V.
    • Wind and Structures
    • /
    • v.6 no.6
    • /
    • pp.419-436
    • /
    • 2003
  • Large-eddy simulations of the flow around a circular cylinder at a Reynolds number, based on cylinder diameter and free-stream velocity, $Re_D=2{\times}10^4$ are presented. Three different dynamic subgrid-scale models are used, viz. the dynamic eddy-viscosity model and two different mixed two-parameter models. The sensitivity to grid refinement in the spanwise and radial directions is systematically investigated. For the highest resolution considered, the effects of subgrid-scale modeling are also discussed in detail. In particular, it is shown that SGS modeling has a significant influence on the low-frequency modulations of the aerodynamics loads, which are related to significant changes in the near wake structure.

Large Eddy Simulation of Turbulent Channel Flow Through Estimation of Test Filter Width (Test Filter 너비의 추정을 통한 난류 채널 유동의 Large Eddy Simulation)

  • Choi, Ho-Jong;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.853-858
    • /
    • 2003
  • The suitable estimation of the filter width in the dynamic eddy viscosity model were investigated in high Reynolds number channel flow. In this study, the improvement on matters by optimizing the test filter shape was attempted through the numerical experiment. The way that select optimum test filter width is recommended. Some test filters, one is based on a discrete representation of the top-hat filter and another are based on a high-order filtering operation, are evaluated in simulations of the turbulent channel flow at Reynolds number 1020, based on friction velocity and channel half width. It appears that the estimation of test filter width practically can decrease the dissipative nature of dynamic eddy viscosity model with explicit test filter. It shows that the value of the filter width ratio used in the dynamic procedure must match the properties of the test filter actually used in the calculation.

ANALYSIS OF VORTEX SHEDDING PHENOMENA AROUND PANTOGRAPH PANHEAD FOR TRAIN USING LARGE EDDY SIMULATION (LES를 이용한 판토그라프 팬헤드의 와 흘림 현상 해석)

  • Jang, Yong-Jun
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.17-23
    • /
    • 2011
  • The turbulent flow and vortex shedding phenomena around pantograph panhead of high speed train were investigated and compared with available experimental data and other simulations. The pantograph head was simplified to be a square-cross-section pillar and assumed to be no interference with other bodies. The Reynolds number (Re) was 22,000. The LES(large eddy simulation) of FDS code was applied to solve the momentum equations and the Wener-Wengle wall model was employed to solve the near wall turbulent flow. Smagorinsky model($C_s$=0.2) was used as SGS(subgrid scale) model. The total grid numbers were about 9 millions and the analyzed domain was divided into 12 multi blocks which were communicated with each other by MPI. The time-averaged mainstream flows were calculated and well compared with experimental data. The phased-averaged quantities had also a good agreement with experimental data. The near-wall turbulence should be carefully treated by wall function or direct resolution to get successful application of LES methods.

An Investigation on Turbulent Flow Characteristics According to the Operating Loads of Three-Dimensional Small-Size Axial Fan by Large Eddy Simulation (대규모 와 모사에 의한 3차원 소형축류홴의 운전부하에 따른 난류유동 특성치 고찰)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.50-56
    • /
    • 2016
  • This paper handled an investigation on the turbulent flow characteristics of three-dimensional small-size axial fan(SSAF) according to operating loads. Also, it was carried out by unsteady-state, incompressible and three-dimensional large eddy simulation(LES). The downstream flow type of SSAF is changed from axial flow to radial flow around the beginning of stall region at the aerodynamic performance curve. Axial mean velocity component largely grows around blade tip at the operating point of A to D, but transverse and vertical mean velocity components as well as Reynolds shear stresses highly develop around blade tip at the operating point of E to H. On the other hand, the peak value of turbulent kinetic energy developed around blade tip shows the highest at the operating point of E.

Large eddy simulation of blockage effects in the assessment of wind effects on tall buildings

  • Gao, Yang;Gu, Ming;Quan, Yong;Feng, Chengdong
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.597-616
    • /
    • 2020
  • The blockage effect on the aerodynamic characteristics of tall buildings is a fundamental issue in wind tunnel test but has rarely been addressed. To evaluate the blockage effects on the aerodynamic forces on a square tall building and flow field peripherally, large eddy simulations (LES) were performed on a 3D square cylinder with an aspect ratio of 6:1 under the uniform smooth inflow and turbulent atmospheric boundary layer (ABL) inflow generated by the narrowband synthesis random flow generator (NSRFG). First, a basic case at a blockage ratio (BR) of 0.8% was conducted to validate the adopted numerical methodology. Subsequently, simulations were systematically performed at 6 different BRs. The simulation results were compared in detail to illustrate the differences induced by the blockage, and the mechanism of the blockage effects under turbulent inflow was emphatically analysed. The results reveal that the pressure coefficients, the aerodynamic forces, and the Strouhal number increase monotonically with BRs. Additionally, the increase of BR leads to more coherence of the turbulent structures and the higher intensity of the vortices in the vicinity of the building. Moreover, the blockage effects on the aerodynamic forces and flow field are more significant under smooth inflow than those under turbulent inflow.

LES Investigation of Pressure Oscillation in Solid Rocket Motor by an Inhibitor (고체모터의 인히비터에 의한 압력 진동 특성 LES 연구)

  • Hong, Ji-Seok;Moon, Hee-Jang;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.42-49
    • /
    • 2015
  • The pressure oscillation induced by inhibitor in a solid rocket motor has been investigated by 3D large eddy simulation(LES) and proper orthogonal decomposition(POD). The vortex generation and breakdown at inhibitor are periodically observed between the inhibitor and the nozzle by flow-acoustic coupling mechanism. The excitation of pressure oscillation occurs as the flow impinges on the submerged nozzle head which recirculate in the cavity in rear dome of the motor chamber. The vortex generation frequency is closely related with the shedding frequencies of the detached vorticities at the inhibiter, which fairly compared with the experimental data.

Dynamic Numerical Modeling for LOx Swirl Injector at Supercritical Conditions (초임계 상태에서의 LOx 스월 인젝터에 대한 동적 수치 모델링)

  • Kim, Kuk-Jin;Heo, Jun-Young;Kim, Jong-Chan;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.42-46
    • /
    • 2009
  • For understanding of high performance liquid rocket engine operating at high pressure, dynamic characteristics of liquid oxygen in a swirl injector operating at supercritical conditions has been numerically investigated. Turbulent numerical model is based on large eddy simulation and contains full conservation laws including Soave modification of Redlich-Kwong equation of state and Chung's model. Preconditioning method is applied to get an effective convergence rate. Numerical analysis results are compared with the one that ideal equation of state applied to. Differences of thermodynamic properties and mixing dynamics are investigated at liquid phase area inside injector and combustion chamber.

  • PDF

A Study on the Turbulent Flowfield in the Annular Combustor with the Multi Swirl Injectors (환형연소기의 Multi Swirl Injector 상호간섭 영향에 관한 연구(1))

  • Kim, Jong-Chan;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.289-292
    • /
    • 2009
  • Injector dynamics of multi swirl injectors in an annular combustor have been investigated by LES(Large Eddy Simulation) turbulent model with MPI parallel computation technique. The present study employs the LM6000 lean premixed swirl-stabilized annular combustor. Real shape combustor is simulated in order to investigate the detail interaction mechanism among multi-injectors. The strong vortex breakdown occurs at the impinging surface between the adjacent injectors so that the complex and strong oscillatory pressure propagates inside of the combustor. Tangential pressure fluctuation mode was captured by including multi injectors in computational domain.

  • PDF