• Title/Summary/Keyword: large earthquake

Search Result 781, Processing Time 0.03 seconds

Evaluation of Ductility and Strength Factors for Special Steel Moment Resisting Frames (철골 연성 모멘트 골조의 연성계수 및 강도계수 평가)

  • Kang, Cheol Kyu;Choi, Byong Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.793-805
    • /
    • 2004
  • The main objective of this paper is to evaluate the ductility and strength factors that are key components of the response modification factor for special steel moment-resistant frames. The ductility factors for special steel moment-resistant frames were calculated by multiplying the ductility factor for SDOF systems and the MDOF modification factors. Ductility factors were computed for elastic and perfectly plastic SDOF systems undergoing different levels of inelastic deformation and periods when subjected to a large number of recorded earthquake ground motions. Based on the results of the regression analysis, simplified expressions were proposed to compute the ductility factors. Based on previous studies, the MDOF modification factors were also proposed to account for the MDOF systems. Strength factors for special steel moment resisting frames were estimated from the results of the nonlinear static analysis. A total of 36 sample steel frames were designed to investigate the ductility and strength factors considering design parameters such as number of stories (4, 8, and 16 stories), seismic zone factors (Z = 0.075, 0.2, and 0.4), framing system (Perimeter Frames, PF and Distributed Frames, DF), and failure mechanism (Strong-Column Weak Beam, SCWB, and Weak-Column Strong-Beam, WCSB). The effects of these design parameters on the ductility and strength factors for special steel moment-resisting frames were investigated.

Seismic Behavior of Bridges Considering Ground Motion Spatial Variation (공간적으로 변화하는 입력지진으로 인한 교량의 지진거동특성)

  • Bae, Byung Ho;Choi, Kwang Kyu;Kang, Seung Woo;Song, Si Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.759-768
    • /
    • 2015
  • The ground motions of large dimensional structures such as long span bridges at different stations during an earthquake, are inevitably different, which is known as the ground motion spatial variation effect. There are many causes that may result in the spatial variability in seismic ground motion, e.g., the wave passage effect due to the different arrival times of waves at different locations; the loss of coherency due to seismic waves scattering in the heterogeneous medium of the ground; the site amplification effect owing to different local soil properties. In previous researches, the site amplification effects have not been considered or considered by a single-layered soil model only. In this study, however, the ground motion amplification and filtering effects are evaluated by multi-layered soil model. Spatially varying ground motion at the sites with different number of layers, depths, and soil characteristics are generated and the variation characteristics of ground motion time histories according to the correlation of coherency loss function and soil conditions are evaluated. For the bridge system composed of two unit bridges, seismic behavior characteristics are analyzed using the generated seismic waves as input ground motion. Especially, relative displacement due to coherency loss and site effect which can cause the unseating and pounding between girders are evaluated. As a result, considering the soil conditions of each site are always important and should not be neglected for an accurate structural response analysis.

A Study on the Rock Pressure Wedge Failure During Ground Excavation (대규모 지하굴착시 쐐기파괴로 인하여 발생하는 토압에 관한 연구)

  • 이승호
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • The geological characteristics of Korea are that we can encounter the rock layer only after 10m of excavation, methods to presume the rock pressure distribution of the rock layer is urgently needed. When using the existing empiric science of Terzaghi-Peck, Tschebotarioff to measure the rock pressure of the rock layer, underestimate the real strength because of the cohesion is ignored. Therefore calculating the horizontal sliding force of wedge block, which includes the dips and shear strength of discontinuities and surcharge load etc., think to be to getting a closer rock stress of the real rock pressure acting upon the earth structure in rock mass. This research use Coulomb soil pressure theory assuming that the backfill soil will yield wedge failure when it has cohesion, applying Prakash-Saran(l963), and then it uses equilibrium of force and shear strength $\tau$=c+$\sigma$tan $\Phi$ of the cliscontinuities. Analyzing shear strength and dips of cliscontinuities using calculated theory according to the status of discontinuities aperture, we were able to find out that because the cohesion and friction angle of the rock layer itself is large enough, how the dip directions and dips facing the excavation face is the only factor deciding whether or not the rock stress is applied. The evaluated theory of this research should be strictly estimated, so that the many parameters such as c, $\Phi$value, types and structures of rock class, excessive lateral pressure, dynamic load, earthquake, needed later when calculating shear strength of discontinuities and especially the ground water effect acting on rock layer should be coumpted with many measuring data achieve at the insite to study the application.

  • PDF

Performance Evaluation of LTE-VPN based Disaster Investigation System for Sharing Disaster Field Information (재난사고 정보공유를 위한 LTE-VPN기반 현장조사시스템 성능평가)

  • Kim, Seong Sam;Shin, Dong Yoon;Nho, Hyun Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.602-609
    • /
    • 2020
  • In the event of a large-scale disaster such as an earthquake, typhoon, landslide, and building collapse, the disaster situation awareness and timely disaster information sharing play a key role in the disaster response and decision-making stages for disaster management, such as disaster site control and evacuation of residents. In this paper, an exited field investigation system of NDMI (National Disaster Management Research Institute) was enhanced with an LTE-VPN- based wireless communication system to provide an effective on-site response in an urgent disaster situation and share observation data or analysis information acquired at the disaster fields in real-time. The required performance of wireless communication for the disaster field investigation system was then analyzed and evaluated. The experimental result for field data transmission performance of an advanced wireless communication investigation system showed that the UDP transmission performance of at least 4.1Mbps is required to ensure a seamless video conference system between disaster sites. In addition, a wireless communication bandwidth of approximately 10 Mbps should be guaranteed to smoothly share the communication and field data between the survey equipment currently mounted on the survey vehicle.

Reliability Analysis of Caisson Type Quaywall (안벽구조물의 신뢰성 해석)

  • Yoon, Gil-Lim;Kim, Dong-Hywan;Kim, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.498-509
    • /
    • 2008
  • Reliability analyses of Level I, II and III for bearing capacity, overturning and sliding of quaywall are carried out to investigate their safety levels depending upon its failure modes, and sensitivity analyses of each design variable are performed to find their effects on safety levels of quaywall. Reliability indices was 1.416 for both level II and III for case study I, and with 2.201 and 1.880, respectively, for the case study II at the critical loading conditions. Thus we were able to know that Level II (FORM) approach is good enough to use in practical design. Generally, it was found that probabilities of failure of quaywall were higher for sliding and bearing capacity failure modes and lower for overturning failure mode. From sensitivity analyses, the most influential design variables to reliability index of quaywall were coefficient of friction, residual water pressure and resistance moment for the sliding, overturning and bearing capacity failure modes, respectively. Especially, the sensitivity of reliability index due to inertial force and dynamic water pressures, which include a large COV when earthquake occurs, did not change greatly.

Verifying ASCE 41 the evaluation model via field tests of masonry infilled RC frames with openings

  • Huang, Chun-Ting;Chiou, Tsung-Chih;Chung, Lap-Loi;Hwang, Shyh-Jiann;Jaung, Wen-Ching
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.157-174
    • /
    • 2020
  • The in-situ pushover test differs from the shake-table test because it is performed outdoors and thus its size is not restricted by space, which allows us to test a full-size building. However, to build a new full-size building for the test is not economical, consequently scholars around the world usually make scale structures or full-scale component units to be tested in the laboratory. However, if in-situ pushover tests can be performed on full-size structures, then the seismic behaviors of buildings during earthquakes can be grasped. In view of this, this study conducts two in-situ pushover tests of reinforced concrete (RC) buildings. One is a masonry-infilled RC building with openings (the openings ratio of masonry infill wall is between 24% and 51%) and the other is an RC building without masonry infill. These two in-situ pushover tests adopt obsolescent RC buildings, which will be demolished, to conduct experiment and successfully obtain seismic capacity curves of the buildings. The test results are available for the development or verification of a seismic evaluation model. This paper uses ASCE 41-17 as the main evaluation model and is accompanied by a simplified pushover analysis, which can predict the seismic capacity curves of low-rise buildings in Taiwan. The predicted maximum base shear values for masonry-infilled RC buildings with openings and for RC buildings without masonry infill are, respectively, 69.69% and 87.33% of the test values. The predicted initial stiffness values are 41.04% and 100.49% of the test values, respectively. It can be seen that the ASCE 41-17 evaluation model is reasonable for the RC building without masonry infill walls. In contrast, the analysis result for the masonry infilled RC building with openings is more conservative than the test value because the ASCE 41-17 evaluation model is limited to masonry infill walls with an openings ratio not exceeding 40%. This study suggests using ASCE 41-17's unreinforced masonry wall evaluation model to simulate a masonry infill wall with an openings ratio greater than 40%. After correction, the predicted maximum base shear values of the masonry infilled RC building with openings is 82.60% of the test values and the predicted initial stiffness value is 67.13% of the test value. Therefore, the proposed method in this study can predict the seismic behavior of a masonry infilled RC frame with large openings.

Sakurajima volcano eruption detected by GOCI and geomagnetic variation analysis - A case study of the 18 Aug, 2013 eruption - (천리안 위성영상에 감지된 사쿠라지마 화산분화와 지자기 변동 분석 연구 - 2013년 8월 18일 분화를 중심으로 -)

  • Kim, Kiyeon;Hwang, Eui-Hong;Lee, Yoon-Kyung;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.259-274
    • /
    • 2014
  • On Aug 18, 2013, Sakurajima volcano in Japan erupted on a relatively large-scale. Geostationary Ocean Color Imager (GOCI) had used to detect volcanic ash in the surrounding area on the next day of this eruption. The geomagnetic variation has been analyzed using geomagnetic data from Cheongyang observatory in Korea and several geomagnetic observatories in Japan. First, we reconstruct geomagnetic data by principal component analysis and conduct semblance analysis by wavelet transform. Secondly, we minimize the error of solar effect by using wavelet based semblance filtering with Kp index. As a result of this study, we could confirm that the geomagnetic variation usually occur at the moment of Sakurajima volcano eruption. However, we cannot rule out the possibilities that it could have been impacted by other factors besides volcanic eruption in other variation's cases. This research is an exceptional study to analyze geomagnetic variation related with abroad volcanic eruption uncommonly in Korea. Moreover, we expect that it can help to develop further study of geomagnetic variation involved in earthquake and volcanic eruption.

Data-driven event detection method for efficient management and recovery of water distribution system man-made disasters (상수도관망 재난관리 및 복구를 위한 데이터기반 이상탐지 방법론 개발)

  • Jung, Donghwi;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.703-711
    • /
    • 2018
  • Water distribution system (WDS) pipe bursts are caused from excessive pressure, pipe aging, and ground shift from temperature change and earthquake. Prompt detection of and response to the failure event help prevent large-scale service interruption and catastrophic sinkhole generation. To that end, this study proposes a improved Western Electric Company (WECO) method to improve the detection effectiveness and efficiency of the original WECO method. The original WECO method is an univariate Statistical Process Control (SPC) technique used for identifying any non-random patterns in system output data. The improved WECO method multiples a threshold modifier (w) to each threshold of WECO sub-rules in order to control the sensitivity of anomaly detection in a water distribution network of interest. The Austin network was used to demonstrated the proposed method in which normal random and abnormal pipe flow data were generated. The best w value was identified from a sensitivity analysis, and the impact of measurement frequency (dt = 5, 10, 15 min etc.) was also investigated. The proposed method was compared to the original WECO method with respect to detection probability, false alarm rate, and averaged detection time. Finally, this study provides a set of guidelines on the use of the WECO method for real-life WDS pipe burst detection.

Development of Smart Multi-function Ground Resistivity Measuring Device using Arduino in Wind Farm (풍력 발전단지내 아두이노를 활용한 스마트 다기능 대지 고유 저항 측정 장치 개발)

  • Kim, Hong-Yong;Yoon, Dong-Gi;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.65-71
    • /
    • 2019
  • Conventional methods of measuring ground resistance and ground resistance field measurement are used to measure voltage drop according to the resistance value of the site by applying current by installing a constant interval of measurement electrode. If the stratified structure of the site site is unique, errors in boundary conditions will occur in the event of back acid and the analysis of the critical ground resistance in the ground design will show much difference from simulation. This study utilizes the Arduino module and smart ground measurement technology in the convergent information and communication environment to develop a reliable smart land resistance measuring device even if the top layer of land is unique, to analyze the land resistance and accumulate data to predict the change in the age of the land. Considering the topographical characteristics of the site, we propose a ground resistance measuring device and its method of measuring ground resistance so that the auxiliary electrode can be installed by correctly positioning the angle and distance in measuring ground resistance. Not only is ground resistance value obtained through electrodes installed to allow accurate ground resistance values to be selected, but it can also be used as a useful material for installing electrical facilities in similar areas. Moreover, by utilizing reliable data and analyzing the large sections of the site, a precise analysis of the site, which is important in ground design as well as construction cost, is expected to be used much in ground facility design such as potential rise.

Case Studies on Distributed Temperature and Strain Sensing(DTSS) by using an Optical fiber (광섬유 센서를 이용한 온도 및 변형 모니터링에 대한 현장응용 사례)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Lee, Sung-Uk;Min, Kyoung-Ju;Park, Dong-Su;Pang, Gi-Sung;Kim, Kang-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.86-95
    • /
    • 2006
  • Brillouin backscatter is a type of reflection that occurs when light is shone into an optical fibre. Brillouin reflections are very sensitive to changes in the fibre arising from external effects, such as temperature, strain and pressure. We report here several case studies on the measurement of strain using Brillouin reflections. A mechanical bending test of an I beam, deployed with both fiber optic sensors and conventional strain gauge rosettes, was performed with the aim of evaluating: (1) the capability and technical limit of the DTSS technology for strain profile sensing; (2) the reliability of strain measurement using fiber optic sensor. The average values of strains obtained from both DTSS and strain gauges (corresponding to the deflection of I beam) showed a linear relationship and an excellent one-to-one match. A practical application of DTSS technology as an early warning system for land sliding or subsidence was examined through a field test at a hillside. Extremely strong, lightweight, rugged, survivable tight-buffered cables, designed for optimal strain transfer to the fibre, were used and clamped on the subsurface at a depth of about 50cm. It was proved that DTSS measurements could detect the exact position and the progress of strain changes induced by land sliding and subsidence. We also carried out the first ever distributed dynamic strain measurement (10Hz) on the Korean Train eXpress(KTX) railway track in Daejeon, Korea. The aim was to analyse the integrity of a section of track that had recently been repaired. The Sensornet DTSS was used to monitor this 85m section of track while a KTX train passed over. In the repaired section the strain increases to levels of 90 microstrain, whereas in the section of regular track the strain is in the region of 30-50 microstrain. The results were excellent since they demonstrate that the DTSS is able to measure small, dynamic changes in strain in rails during normal operating conditions. The current 10km range of the DTSS creates a potential to monitor the integrity of large lengths of track, and especially higher risk sections such as bridges, repaired track and areas at risk of subsidence.

  • PDF