• 제목/요약/키워드: large displacement analysis

검색결과 722건 처리시간 0.029초

적층 복합재료를 사용한 곡면형 작동기의 성능 예측을 위한 대규모 수치해석 연구 (Large Scale Numerical Analysis for the Performance Prediction of Multilayered Composite Curved Actuator)

  • 정순완;황인성;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.167-170
    • /
    • 2003
  • In this paper, the electromechanical displacements of curved actuators using laminated composites are calculated by finite element method to design the optimal configuration of curved actuators. To predict the pre-stress in the device due to the mismatch in coefficients of thermal expansion, the carbon-epoxy and glass- epoxy as well as PZT ceramic is also numerically modeled by using hexahedral solid elements. Because the modeling of these thin layers causes the numbers of degree of freedom to increase, large-scale structural analyses are performed in a cluster system in this study. The curved shape and pre-stress in the actuator are obtained by the cured curvature analysis. The displacement under the piezoelectric force by an applied voltage is also calculated to compare the performance of curved actuator. The thickness of composite is chosen as design factor.

  • PDF

변위환기를 이용한 대형 용접작업장의 공기환경 개선에 관한 연구 (Improvement of Indoor Air Environment in a Large Welding Factory by Displacement Ventilation)

  • 조동환;강석윤;최충현;임윤철;이재헌;문정환
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.69-74
    • /
    • 2005
  • In this paper, the indoor air environment in a large welding factory applied to displacement ventilation was investigated with experiment and numerical analysis for previous and new ventilation system. Concentration of fumes was analyzed for three cases with wind direction of outdoor. For experimental results, the dust concentration with new ventilation system decreased about 42-60% and the visibility increased about 11-18%. For numerical analysis, the exhaust efficiency of fumes was low when the wind and exhaust flow direction was inverse. It was found that the fumes in the factory decreased about 77% in case of the northern wind.

  • PDF

부분 무치악 임플랜트 보철 수복시 자연치와의 비고정성 연결형태에 따른 3차원 유한요소법적 연구 (THE THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE PARTIALLY EDENTULOUS IMPLANT PROSTHESIS WITH VARYING TYPES OF NON-RIGID CONNECTION)

  • 이선아;정재헌
    • 대한치과보철학회지
    • /
    • 제34권1호
    • /
    • pp.101-124
    • /
    • 1996
  • In this study, we designed the finite element models of mandible with varying their connecting types between the prosthesis on implant fixture and 2nd premolar, which were free-standing case(Mf), precision attachment case(Mp), semiprecision attachment case(Ms) and telescopic case(Mt). The basic model of the designed finite element models, which contained a canine and the 1st & 2nd premolar, was implanted in the edentulous site of the 1st & 2nd molar by two implant fixtures. We applied the load in all models by two ways. A vertical load of 200N was applied at each central fossa of 2nd premolar and 1st implant. A tilting load of 20N with inclination of $45^{\circ}$ to lingual side was applied to buccal cusp tips of each 2nd premolar and 1st implant. And then we analyzed three-dimensional finite element models, making a comparative study of principal stress and displacement in four cases respectively. Three-dimensional finite element analysis was performed for the stress distribution and the displacement using commercial software(IDEAS program) for SUN-SPARC workstation. The results were as follows : 1 Under vertical load or tilting load, maximum displacement appeared at the 2nd premolar. Semiprecision case showed the largest maximum displacement, and maximum displacement reduced in the order of precision attachment, free-standing and telescopic case. 2. Under vertical load. the pattern of displacement of the 1st implant appeared mesio-inclined because of the 2nd implant splinted together. But displacement pattern of the 2nd premolar varied according to their connection type with prosthesis. The 2nd premolar showed a little mesio-inclined vertical displacement in case of free-standing and disto-inclined vertical displacement due to attachment in case of precision and semiprecision attachment. In telescopic case, the largest mesio-inclined vertical displacement has been shown, so, the 1st premolar leaned mesial side. 3. Under tilting load, The pattern of displacement was similar in all four cases which appeared displaced to lingual side. But, the maximum displacement of 2nd premolar appeared larger than that of the first implant. Therefore, there was large discrepancy in displacement between natural tooth and implant during tilting load. 4. Under vertical load, the maximum compressive stress appeared at the 1st implant's neck. Semiprecision attachment case showed the largest maximum compressive stress, and the maximum compressive stress reduced in the order of precision attachment, telescopic and free-standing case. 5 Under vertical load, the maximum tensile stress appeared at the 2nd implant's distal neck. Semiprecision attachment case showed the largest maximum tensile stress, and the maximum tensile stress reduced in the order of precision attachment, telescopic and free-standing case. 6. Under vertical load or tilting load, principal stress appeared little between natural tooth & implant in free-standing case, but large principal stress was distributed at upper crown and distal contact site of the 2nd premolar in telescopic case. Principal stress appeared large at keyway & around keyway of distal contact site of the 2nd premolar in precision and semiprecision attachment case, appearing more broad and homogeneous in precision attachment case than in semiprecision attachment case.

  • PDF

Experimental study on lead extrusion damper and its earthquake mitigation effects for large-span reticulated shell

  • Yang, M.F.;Xu, Z.D.;Zhang, X.C.
    • Steel and Composite Structures
    • /
    • 제18권2호
    • /
    • pp.481-496
    • /
    • 2015
  • A Lead Extrusion Damper (LED) is experimentally studied under various frequencies and displacement amplitudes. Experimental results show that the force-displacement hysteresis loops of the LED are close to rectangular and the force-velocity hysteresis loops exhibit nonlinear hysteretic characteristic. Also, the LED can provide consistent energy dissipation without any stiffness degradation. Based on the experimental results, a mathematical model is then proposed to describe the effects of frequency and displacement on property of LED. It can be proved from the comparison between experimental and numerical results that the mathematical model can accurately describe the mechanical behavior of LED. Subsequently, the seismic responses of the Schwedler reticulated shell structure with LEDs are analyzed by ANSYS software, in which three different installation forms of LEDs are considered. It can be concluded that the LED can effectively reduce the displacement and acceleration responses of this type of structures.

변화하는 감쇠를 갖는 계가 조화력을 받을 때의 운동 - 이론적 해석 (Motion of a System with Varying Damping Subject to Harmonic Force - Analytical Analysis)

  • 박오철;이건명
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.898-902
    • /
    • 2006
  • The motion of a system composed of a plate, constant springs and varying dampers is considered when the system is subject to harmonic force. Letting the frequencies of harmonic force and damper variation ${\Large f}_1\;and\;{\Large f}_2$ respectively, the displacement at the center of the plate has the strongest component at frequency ${\Large f}_1$. The angular displacement of the plate has strong components at ${\Large f}_1-{\Large f}_2$ and the natural frequency of the rotational mode of the system. If these two frequencies coincide, the plate oscillates with almost single frequency and a large amplitude. Part of these simulation results are proved analytically.

  • PDF

Construction stage analysis of three-dimensional cable-stayed bridges

  • Atmaca, Barbaros;Ates, Sevket
    • Steel and Composite Structures
    • /
    • 제12권5호
    • /
    • pp.413-426
    • /
    • 2012
  • In this paper, nonlinear static analysis of three-dimensional cable stayed bridges is performed for the time dependent materials properties such as creep, shrinkage and aging of concrete and relaxation of cable. Manavgat Cable-Stayed Bridge is selected as an application. The bridge located in Antalya, Turkey, was constructed with balanced cantilever construction method. Total length of the bridge is 202 m. The bridge consists of one $\ddot{e}$ shape steel tower. The tower is at the middle of the bridge span. The construction stages and 3D finite element model of bridge are modeled with SAP2000. Large displacement occurs in these types of bridges so geometric nonlinearity is taken into consideration in the analysis by using P-Delta plus large displacement criterion. The time dependent material strength and geometric variations are included in the analysis. Two different finite element analyses carried out which are evaluated with and without construction stages and results are compared with each other. As a result of these analyses, variation of internal forces such as bending moment, axial forces and shear forces for bridge tower and displacement and bending moment for bridge deck are given with detailed. It is seen that construction stage analysis has a remarkable effect on the structural behavior of the bridge.

Seismic vulnerability assessment of confined masonry buildings based on ESDOF

  • Ranjbaran, Fariman;Kiyani, Amir Reza
    • Earthquakes and Structures
    • /
    • 제12권5호
    • /
    • pp.489-499
    • /
    • 2017
  • The effects of past earthquakes have demonstrated the seismic vulnerability of confined masonry structures (CMSs) to earthquakes. The results of experimental analysis indicate that damage to these structures depends on lateral displacement applied to the walls. Seismic evaluation lacks an analytical approach because of the complexity of the behavior of this type of structure; an empirical approach is often used for this purpose. Seismic assessment and risk analysis of CMSs, especially in area have a large number of such buildings is difficult and could be riddled with error. The present study used analytical and numerical models to develop a simplified nonlinear displacement-based approach for seismic assessment of a CMS. The methodology is based on the concept of ESDOF and displacement demand and is compared with displacement capacity at the characteristic period of vibration according to performance level. Displacement demand was identified using the nonlinear displacement spectrum for a specified limit state. This approach is based on a macro model and nonlinear incremental dynamic analysis of a 3D prototype structure taking into account uncertainty of the mechanical properties and results in a simple, precise method for seismic assessment of a CMS. To validate the approach, a case study was considered in the form of an analytical fragility curve which was then compared with the precise method.

개선된 탄소성 해석을 이용한 버팀지지 흙막이벽의 거동비교 (Comparison of Displacement of the Braced Retaining Wall by Developed Elasto-Plastic Analysis)

  • 신진환;김동신
    • 한국안전학회지
    • /
    • 제19권2호
    • /
    • pp.112-118
    • /
    • 2004
  • Recently, when being constructed the large structures, the deep excavations have performed to utilize the underground space. As the ground excavation is deeper, the damage of the adjacent structure and the ground is frequently occurred. the Analysis of the retaining structures is necessary to safety of the excavation works. There are many methods such as elasto-plastic theory, FEM, and FDM to analyze the displacement of the retaining structure. In this thesis, GEBA-1 program by the Nakamura-Nakajawa elasto-plastic method was developed. The lateral displacement of the wall was analyzed by the developed program GEBA-1, SUNEX, and EXCAD, and compared with the measured displacement bye the Inclinometer. The monitored fields were three excavation work site in S-I, S-II, and S-III area. Excavation method of each site is braced retaining wall using H-pile. Excavation depth is 14m, 14m, and 8.2m.

Free vibration analysis of large sag catenary with application to catenary jumper

  • Klaycham, Karun;Nguantud, Panisara;Athisakul, Chainarong;Chucheepsakul, Somchai
    • Ocean Systems Engineering
    • /
    • 제10권1호
    • /
    • pp.67-86
    • /
    • 2020
  • The main goal of this study is to investigate the free vibration analysis of a large sag catenary with application to the jumper in hybrid riser system. The equation of motion is derived by using the variational method based on the virtual work principle. The finite element method is applied to evaluate the numerical solutions. The large sag catenary is utilized as an initial configuration for vibration analysis. The nonlinearity due to the large sag curvature of static configuration is taken into account in the element stiffness matrix. The natural frequencies of large sag catenary and their corresponding mode shapes are determined by solving the eigenvalue problem. The numerical examples of a large sag catenary jumpers are presented. The influences of bending rigidity and large sag shape on the free vibration behaviors of the catenary jumper are provided. The results indicate that the increase in sag reduces the jumper natural frequencies. The corresponding mode shapes of the jumper with large sag catenary shape are comprised of normal and tangential displacements. The large sag curvature including in the element stiffness matrix increases the natural frequency especially for a case of very large sag shape. Mostly, the mode shapes of jumper are dominated by the normal displacement, however, the tangential displacement significantly occurs around the lowest point of sag. The increase in degree of inclination of the catenary tends to increase the natural frequencies.