• Title/Summary/Keyword: large displacement analysis

Search Result 732, Processing Time 0.026 seconds

Nonlinear aerostatic stability analysis of Hutong cable-stayed rail-cum-road bridge

  • Xu, Man;Guo, Weiwei;Xia, He;Li, Kebing
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.485-503
    • /
    • 2016
  • To investigate the nonlinear aerostatic stability of the Hutong cable-stayed rail-cum-road bridge with ultra-kilometer main span, a FEM bridge model is established. The tri-component wind loads and geometric nonlinearity are taken into consideration and discussed for the influence of nonlinear parameters and factors on bridge resistant capacity of aerostatic instability. The results show that the effect of initial wind attack-angle is significant for the aerostatic stability analysis of the bridge. The geometric nonlinearities of the bridge are of considerable importance in the analysis, especially the effect of cable sag. The instable mechanism of the Hutong Bridge with a steel truss girder is the spatial combination of vertical bending and torsion with large lateral bending displacement. The design wind velocity is much lower than the static instability wind velocity, and the structural aerostatic resistance capacity can meet the requirement.

A Study on the Optimum ship Design of Grillaged Double Bottom (격자형 이중저의 선체최적설계에 관한 연구)

  • 박명규
    • Journal of the Korean Institute of Navigation
    • /
    • v.12 no.2
    • /
    • pp.68-101
    • /
    • 1988
  • In spite of the widespread use of stiffend plates in ship structures, it is very difficult to analysis these directly. So, in conventional analysis of plate structures, above structures are used to be idealized as orthotropic plate or grillage structures. Lately, the development of large computers, it is able to apply the optimum techniques to structural design. In this paper, the double bottom structure of Bulk Carrier was idealized into flat grillage which is composed of intersecting beam stiffencers primarily loaded mormal to its surface. And strength analysis was carried out by using the finite element method based on displacement. And further, according to variation of floor space and double tobbon heightm, the optimum design was carrid out by using Hooke and Jeeves direct search method.

  • PDF

Rotordynamic and Leakage Analysis for Eccentric Annular Seal (편심된 실의 누설량 및 동특성계수 해석)

  • 하태웅;이용복;김창호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.528-534
    • /
    • 2001
  • Basic equations and its solution procedure are derived for the analysis of an annular pump seal in which the rotor has a large static displacement from the centered position. The Bulk-flow is assumed for a control volume set in the seal clearance and the flow is assumed to be completely turbulent in axial and circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about an eccentric position. Flow variables are expanded by using Fourier series for the solution procedure. Integration of the resultant first-order pressure distribution along and around the seal defines the 12 elements of rotordynamic coefficients of the eccentric annular pump seal. The results of leakage and rotordynamic coefficients are presented and compared with the Marquette's experimental results and the San Andres' theoretical analysis.

  • PDF

Geometrically nonlinear analysis of laminated composites by an improved degenerated shell element

  • Yoo, Seung-Woon;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.9 no.1
    • /
    • pp.99-110
    • /
    • 2000
  • The objective of this paper is to extend the use of the improved degenerated shell element to the linear and the large displacement analysis of plates and shells with laminated composites. In the formulation of the element stiffness, the combined use of three different techniques was made. This element is free of serious shear/membrane locking problems and undesirable compatible/commutable spurious kinematic deformation modes. The total Lagrangian approach has been utilized for the definition of the deformation and the solution to the nonlinear equilibrium equations is obtained by the Newton-Raphson method. The applicability and accuracy of this improved degenerated shell element in the analysis of laminated composite plates and shells are demonstrated by solving several numerical examples.

A Study on the Safety Assessment of Curved Hollow RC Slab Bridge Structures (곡선형 RC 중공 슬래브교의 안전성 평가 사례 연구)

  • Chai, Won-Kyu;Jo, Byung-Wan;Kim, Kwang-Il
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.96-100
    • /
    • 2006
  • In this thesis, the crack investigation, the damage investigation, the drawing check, and the structural analysis were performed on a curved hollow RC(reinforced concrete) slab bridge structure to assess the structural safety of that. From the crack investigation result, main reason of crack occurrence is guessed with travelling of the large truck. Therefore reinforcement of slab structure is necessary by using the steel plate. When structural analysis, the straight beam model, the curved beam model, and the curved plate model is used. From the results of structural analysis for curved hollow RC slab bridge, the maximum bending moment and the maximum shear force was not a difference in each models. But the vertical displacement of mid span using the curved beam model was greater than that using the other models.

Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element

  • Rezaiee-Pajand, M.;Masoodi, Amir R.;Arabi, E.
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.389-401
    • /
    • 2018
  • An isoparametric six-node triangular element is utilized for geometrically nonlinear analysis of functionally graded (FG) shells. To overcome the shear and membrane locking, the element is improved by using strain interpolation functions. The Total Lagrangian formulation is employed to include the large displacements and rotations. Finding the nonlinear behavior of FG shells via laminated modeling is also the goal. A power function is employed to formulate the variation of elastic modulus through the thickness of shells. The results are presented in two ways, including the general FGM formulation and the laminated modeling. The equilibrium path is obtained by using the Generalized Displacement Control Method. Some popular benchmarks, including hyperbolical shell structures are solved to declare the correctness and accuracy of proposed formulations.

Rotordynamic and Leakage Analysis for Eccentric Annular Seal (편심된 펌프 실의 누설 및 회전체동역학적 해석)

  • Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.2 s.11
    • /
    • pp.15-21
    • /
    • 2001
  • Basic equations and their solution procedure we derived for the analysis of an annular pump seal in which the rotor has a large static displacement from the centered position. The Bulk-flow is assumed for a control volume set in the seal clearance and the flow is assumed to be completely turbulent in axial and circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about an eccentric position. Flow variables are expanded by using Fourier series for the solution procedure. Integration of the resultant first-order pressure distribution along and around the seal defines the 12 elements of rotordynamic coefficients of the eccentric annular pump seal. The results of leakage and rotordynamic coefficients aye presented and compared with the Marquette's experimental results and the San Andres' theoretical analysis.

  • PDF

A Study on the Convergency of the Finite Element Analysis of Rubber Using Numerical Differentiation Mehthod (수치미분을 이용한 고무의 유한요소 해석시 수렴성 연구)

  • 권영두;노권택;이창섭;홍상표
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.141-153
    • /
    • 1999
  • A finite element procedure for the analysis of rubber-like hyperelastic material is developed. The volumetric incompressiblity conditions of the rubber deformation is included in the formulation by using penalty method. In this paper, the behavior of the rubber deformation is represented by hyperelastic constitutive relations based on a generalized Mooney-Rivlin model. The principle of virtual work is used to derive nonlinear finite element equation for the large displacement problem and presented in total-Lagrangian description. The finite element procedure using analytic differentiation resulted in very close solution to the result of the well known commercial packages NISAII AND ABAQUS. Numerical tests show that the results from the numerical differentiation method coincide very well with those from the analytic method and the well known commercial packages in static analysis. The convergency of rubber usingν iteration method is also discussed.

  • PDF

An Efficient Analysis of Framed-Tube Structures (고층 튜브 구조물의 효율적 해석)

  • 이동근;김남희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.133-138
    • /
    • 1992
  • The three dimensional analysis of Framed-Tube structures is neither easy nor efficient because of longer computational time, large memory requirement, tedious input preparation and bulky output. An efficient analysis model for framed-tube structure is proposed in this study. The proposed model can save the computational effort by using the assumption of the rigid floor diaphragm effect and matrix condensation technique. Moreover, it is develpoed by assembling two dimensional frames using the link degrees of freedom which are temporary used to satisfy the vertical displacement compatibility at the corners of a framed-tube. The accuracy and the efficiency of this analytical model is established by comparing with the results using the computer code SAPIV which is based on the three dimensional finite element model.

  • PDF

Seismic Pounding Analysis of Bridge According to Soil Stiffness and Natural Frequency Ratio (지반강성 및 고유진동수비에 따른 교량의 지진충돌해석)

  • Kang, Seung Woo;Choi, Kwang Kyu;Bae, Byung Ho;Ko, Jae Sang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.193-200
    • /
    • 2014
  • This paper examines the pounding problem between adjacent decks subjected to strong earthquakes. The elastomeric bearings in an isolated bridge reduce the stresses on the superstructure and cushion the impact by transferring smaller seismic forces to the substructure. On the other hand, these bearings also allow large horizontal displacement of the superstructure due to seismic forces. Bridges having various supporting soil conditions and different frequency ratios between adjacent decks are investigated by numerical analysis. In the analysis, decision making is conducted whether the collision took place or not and, the magnitude of pounding force and the duration time of collision are obtained and the results are discussed.