• Title/Summary/Keyword: large deformation numerical analysis

Search Result 318, Processing Time 0.028 seconds

Calculation of Welding Deformations by Simplified Thermal Elasto-plastic Analysis

  • Seo Sung Il
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.40-49
    • /
    • 2004
  • Welding deformations injure the beauty of appearance of a structure, decrease its buckling strength and prevent increase of productivity. Welding deformations of real structures are complicated and the accurate prediction of welding deformations has been a difficult problem. This study proposes a method to predict the welding deformations of large structures accurately and practically based on the simplified thermal elasto-plastic analysis method. The proposed method combines the inherent strain theory with the numerical or theoretical analysis method and the experimental results. The weld joint is assumed to be divided into 3 regions such as inherent strain region, material softening region and base metal region. Characteristic material properties are used in structural modeling and analysis for reasonable simplification. Calculated results by this method show good agreement with the experimental results. It was proven that this method gives an accurate and efficient solution for the problem of welding deformation calculation of large structures.

Three Dimensional Behaviour of the Rock Mass around a Large Rock Cavern during Excavation (지하 대공동의 3차원 굴착거동에 관한 연구)

  • 이영남;서영호;주광수
    • Tunnel and Underground Space
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 1998
  • This paper presents the results of deformation measurement and numerical analysis carried out to study the behaviour of the rock mass around large underground oil storage caverns. Displacements during excavation have been monitored using borehole extensometers which had been installed before the excavation of caverns proceeded. Numerical analysis has been carried out to examine the three-dimensional behaviour of rock and the face advance effect. The input parameters for this analysis were determined from the results of laboratory and field tests. The deformation modulus of the rock mass was determined from plate loading test at the site and in-situ stresses were measured from the overcoring method with USBM deformation gauge. The results from this study gave a clear picture for three-dimensional behaviour of the rock mass, hence would be used for the optimum design.

  • PDF

Estimation of the excavation damage zone in TBM tunnel using large deformation FE analysis

  • Kim, Dohyun;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.323-335
    • /
    • 2021
  • This paper aims to estimate the range of the excavation damaged zone (EDZ) formation caused by the tunnel boring machine (TBM) advancement through dynamic three-dimensional large deformation finite element analysis. Large deformation analysis based on Coupled Eulerian-Lagrangian (CEL) analysis is used to accurately simulate the behavior during TBM excavation. The analysis model is verified based on numerous test results reported in the literature. The range of the formed EDZ will be suggested as a boundary under various conditions - different tunnel diameter, tunnel depth, and rock type. Moreover, evaluation of the integrity of the tunnel structure during excavation has been carried out. Based on the numerical results, the apparent boundary of the EDZ is shown to within the range of 0.7D (D: tunnel diameter) around the excavation surface. Through series of numerical computation, it is clear that for the rock of with higher rock mass rating (RMR) grade (close to 1st grade), the EDZ around the tunnel tends to increase. The size of the EDZ is found to be direct proportional to the tunnel diameter, whereas the depth of the tunnel is inversely proportional to the magnitude of the EDZ. However, the relationship between the formation of the EDZ and the stability of the tunnel was not found to be consistent. In case where the TBM excavation is carried out in hard rock or rock under high confinement (excavation under greater depth), large range of the EDZ may be formed, but less strain occurs along the excavation surface during excavation and is found to be more stable.

Finite Element Analysis of Elasto-Plastic Large Deformation considering the Isotropic Damage(the 2nd Report) (등방성손상을 고려한 탄소성 대변형 무제의 유한요소해석(제2보))

  • 이종원
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.76-83
    • /
    • 2000
  • this paper was concentrated on the finite element formulation to solve boundary value problems by using the isotropic elasto-plastic damage constitutive model proposed previously(Noh, 2000) The plastic damage of ductile materials is generally accompanied by large plasticdeformation and strain. So nonlinearity problems induced by large deformation large rotation and large strain behaviors were dealt with using the nonlinear kinematics of elasto-plastic deformations based on the continuum mechanics. The elasto-plastic damage constitutive model was applied to the nonlinear finite element formulation process of Shin et al(1997) and an improved analysis model considering the all nonlinearities of structural behaviors is proposed. Finally to investigate the applicability and validity of the numerical model some numerial examples were considered.

  • PDF

Low-Velocity Impact Response Analysis of Composite Laminates Considering Higher Order Shear Deformation and Large Deflection (고차전단변형과 대처짐을 고려한 복합적층판의 저속충격거동 해석)

  • 최익현;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2982-2994
    • /
    • 1993
  • Low-velocity impact responses of composite laminates are investigated using the finite element method based on various theories. In two-dimensional nonlinear analysis, a displacement field considering higher order shear deformation and large deflection of the laminate is assumed and a finite element formulation is developed using a C$^{o}$-continuous 9-node plate element. Also, three-dimensional linear analysis based on the infinitesimal strain-displacement assumptions is performed using 8-node brick elements with incompatible modes. A modified Hertzian contact law is incorporated into the finite element program to evaluate the impact force. In the time integration, the Newmark constant acceleration algorithm is used in conjuction with successive iterations within each time step. Numerical results from static analysis as well as the impact response analysis are presented including impact force histories, deflections, strains in the laminate. Impact responses according to two typical low-velocity impact conditions are compared each other.

Dynamic Analysis of Simply Supported Flexible Structures Undergoing Large Overall Motion (전체운동을 하는 단순지지 유연 구조물의 동적해석)

  • 유홍희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1363-1370
    • /
    • 1995
  • A nonlinear dynamic modeling method for simply supported structures undergoing large overall motion is suggested. The modeling method employs Rayleigh-Ritz mode technique and Von Karman nonlinear strain measures. Numerical study shows that the suggested modeling method provides qualitatively different results from those of the Classical Linear Cartesian modeling method. Especially, natural frequency variations and residual deformation due to membrane strain effects are observed in the numerical results obtained by the suggested modeling method.

Estimation of deformation modulus for rock mass using stress distribution under ground in Large Plate Load Test (대형평판재하시험의 지중응력 측정결과를 이용한 연암의 변형계수 산정)

  • Park, Won-Tae;Lee, Min-Hee;Choi, Yong-Kyu;Kim, Seok-Chan;Kim, Jung-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.539-545
    • /
    • 2010
  • The field plate test has a good potential for determining since it measures both plate pressure and settlement. The deformation modulus of rock mass is differently measured for status of structures. The values of deformation modulus are obtained from laboratory test (uniaxial and triaxial test) and field test (pressuremeter test). Plate load test should be conducted by different loading plate sizes for geological structure of rock mass and scale of structures. In this paper, large plate load tests were performed to predict of structure's behavior and evaluate the ultimate bearing capacity of the foundation on soft rock. Simultaneously, deformation modulus of rock mass was estimated by back analysis of stresses measured in field test under rock mass. Finally, we verified the validation of deformation modulus of rock mass through result of large plate load test and numerical simulation.

  • PDF

Numerical Analysis of Plate Deformation by Induction Heating (고주파 유도 가열에 의한 판 변형의 간이 수치 해석)

  • 장창두;김호경;하윤석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.311-318
    • /
    • 2002
  • In this study, we developed an analysis method of plate forming by induction heating and verified the effectiveness of the present method through a series of experiments. The phenomena of the induction heating is a 3D transient problem coupled with electromagnetic, heat transfer, and elastoplastic large deformation analyses. To solve the problem, we suggest a proper model and an integrated system. Using the present analysis model, we can estimate the plate deformation in heating without experiments and simulate the plate bending process of induction heating.

  • PDF

Study on the Sheet Rolling by a Rigid-Plastic Finite Element Method Considering Large Deformation Formulation (강소성 대변형 유한요소법을 이용한 판재 압연연구)

  • 김동원;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.145-153
    • /
    • 1991
  • A numerical simulation of the nonsteady state rolling process in the plane strain condition is presented in the basis of the rigid-plastic finite element method by considering large deformation. In order to apply the large deformation theory to the numerical method for sheet rolling problems, constitutive equation relating 2nd-Piola Kirchhoff stress and Lagrangian strain which reflect geometrical nonlinearity is used. To confirm the validity of the developed algorithm, the analysis of the neutral flow region, roll separating force, torque, pressure and stress/strain distributions on the workpiece is conducted from the bite of the material until the steady state is reached. The computed results of the roll force and torque in the present finite element analysis are lower than those corresponding to small strain theory. The pressure distribution at the work piece-roll interface is found to show the typical 'friction hill' type only. The peak value in near the neutral region, however, is good agrements with the existing results. the neutral region, however, is good agrements with the existing results. The frictional force at the roll interface provide detailed information about the neutral point where the shear forces change direction. In addition, the analysis also includes the effect and influence of material condition, strip thickness, work roll diameter, as well as roll speed and lubricant on each deformation process.

Study on Effect of Shell Plate Deformation to Radar Cross Section of Warship (선체외판의 변형이 수상함 RCS에 미치는 영향 연구)

  • Kim, Kook-Hyun;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.509-515
    • /
    • 2011
  • The radar cross section (RCS) of warships is a crucial design factor to improve the survivability in terms of not only low observablity of the platform but also efficiency of on-board sensors and jamming devices against enemy threat. In design stage, numerical models are generated in order to quantitatively assess RCS, of which hull surfaces are modeled with the finite number of the flat plate. However, in practice, hull surfaces are permanently deformed by various kinds of loads such as winds and ocean waves faced during operations. In this paper, the effect of these shell plate deformation to RCS is numerically investigated. For this purpose, RCS calculations are carried out for various kinds of numerical models, such as single plates, dihedrals, large-sized undulate plates, and virtual warships, with some extent of permanent deformation. The results are compared with those of corresponding models without permanent deformation. It is concluded that the permanent deformation of hull surface highly influences RCS characteristics of warships, therefore they should be considered in the RCS analysis.