• Title/Summary/Keyword: large antenna

Search Result 306, Processing Time 0.031 seconds

Ferrite-based wideband circularly polarized microstrip antenna design

  • Mashhadi, Mostafa;Komjani, Nader;Rejaei, Behzad;Ghalibafan, Javad
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.289-297
    • /
    • 2019
  • In this paper, a wideband, circularly polarized patch antenna is proposed that leverages the unidirectional resonant modes of a circular patch mounted on top of a grounded dielectric-ferrite substrate. The proposed antenna is fed via the proximity coupling method and several parasitically coupled patches are placed on a dielectric superstrate to enhance the impedance bandwidth of the antenna. The resonant modes of the structure rotate only in the clockwise or counter clockwise directions. In the frequency range where the effective permeability of the ferrite layer is negative, the resonance frequencies of these modes differ significantly, which produces a large axial ratio (AR) bandwidth. For the proposed antenna, the numerical results show the 10 dB impedance bandwidth to be around 44% and the 3 dB axial ratio bandwidth to be higher than 64%.

A Study on the Random Vibration Analysis of Large Scale Antenna (대형 안테나의 Random Vibration 해석에 관한 연구)

  • Shin, Geon-Ho;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.44-50
    • /
    • 2021
  • This study analyzed the stability of antenna equipped on vehicles by the link of modal analysis and random vibration analysis with the vibration data of MIL-STD-810H, METHOD 514.8. As a result of the random vibration analysis of antenna, the maximum equivalent stress 41.9MPa and minimum margin of safety 8.37 was generated in the bracket of antenna by the vertical direction vibration. Thus, it was found that antenna has enough stability during the operation.

Evaluation of Cooling System Suitability for Large Scale Antenna (대형 안테나 냉각시스템의 적합성 평가)

  • Shin, Geon-Ho;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.60-66
    • /
    • 2021
  • The antenna transmits and receives signals has a number of electronics that generate heat. For cooling, four fans and airways circulate air inside the antenna-equipped housing to exchange heat from the cooling plate assembly. In this study, fluid analysis was conducted to assess the suitability of the cooling system. The electronic components of the antenna exhibited temperature values lower than the maximum operating temperature of the components, which showed that the cooling system for the antenna had sufficient performance.

Computational Complexity Analysis of Cascade AOA Estimation Algorithm Based on FMCCA Antenna

  • Kim, Tae-yun;Hwang, Suk-seung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.91-98
    • /
    • 2022
  • In the next generation wireless communication system, the beamforming technique based on a massive antenna is one of core technologies for transmitting and receiving huge amounts of data, efficiently and accurately. For highly performed and highly reliable beamforming, it is required to accurately estimate the Angle of Arrival (AOA) for the desired signal incident to an antenna. Employing the massive antenna with a large number of elements, although the accuracy of the AOA estimation is enhanced, its computational complexity is dramatically increased so much that real-time communication is difficult. In order to improve this problem, AOA estimation algorithms based on the massive antenna with the low computational complexity have been actively studied. In this paper, we compute and analyze the computational complexity of the cascade AOA estimation algorithm based on the Flexible Massive Concentric Circular Array (FMCCA). In addition, its computational complexity is compared to conventional AOA estimation techniques such as the Multiple Signal Classification (MUSIC) algorithm with the high resolution and the Only Beamspace MUSIC (OBM) algorithm.

Design and Implementation of a Internal Mobile Antenna for TDMB and KPCS (TDMB와 KPCS 대역을 지원하는 내장형 휴대폰 안테나의 설계 및 구현)

  • Park, Jun-Han;Lee, Chi-Woo;Yang, Myo-Geun;Seong, Won-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.161-166
    • /
    • 2009
  • In this paper, we propose the internal mobile antenna for TDMB and KPCS. The proposed antenna is made of different dielectric substrate and it has small size ($45{\times}8{\times}8\;mm$, about 2.8 cc) for mobile device. TDMB antenna is designed spiral structure that makes maximum current for each cell and KPCS antenna is PIFA that is usually used for internal antenna. In order to compensate length of resonance TDMB antenna has a large inductor above 100 nH. In this case, the inductor isolate KPCS signal at TDMB by cutting high frequency. Also the antenna has good isolation because TDMB radiator is parasitic element in KPCS band. We simulated the antenna by using CST microwave studio and measured performance of the antenna in anechoic chamber Proposed antenna has $-6{\sim}-14\;dBi$ gain for TDMB and $-3.5{\sim}-5\;dBi$ gain for KPCS.

Radiation Characteristics of a Circular Loop Antenna in Moving Media. (운동매질내에서의 Circula Loop Antenna의 방사특성(II))

  • 최병하
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.9 no.2
    • /
    • pp.17-23
    • /
    • 1972
  • In this paper, the radiation characteristics of a large circular loop antenna with sinusoidal current distribution is studded in a moving media with a constant velocity much less than the speed of light. The diameter of the circular loop antenna is comparable with or larger than wave length. In studing the radiation characteristics, vector potential for the antenna is derived and relative field pattern is plotted from the vector potentials. Finally the field patterns are compared with those of stationary media. It is found that maximum directivities are shifted to the direction of the velocity of the media, and the field intensities are decreased in that direction and increased in opposite direction by the velocity component paralell to the loop plane. It is also found that the deviations for the pattern are proportional to the velocity of the media, the frequency of the distributed current, the diameter of the loop antenna, and the daviation depends only upon the parallel component of the velocity to the loop plane.

  • PDF

Mechanism Modeling and Analysis of Deployable Satellite Antenna (전개형 위성 안테나 메커니즘 모델링 및 분석)

  • Lee, Seung-Yup;Jeong, Suk-Yong;Choi, Yoon-Hyuk;Cho, Ki-Dae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.601-609
    • /
    • 2014
  • Large number of SAR(Synthetic Aperture Radar) satellites, one type of earth observation satellite, have been developed as they have the advantage of not being affected by surrounding environment during the earth image acquisition. In order to gain high image quality, SAR antenna should have large diameter. However, internal space of satellite launch vehicle is limited and this leads SAR antenna to be designed deployable so that it can be folded in launch vehicle and unfolded in space. In this research, values of various design factors of deployable satellite antenna were chosen considering satellite's target mission. Configuration of deployable satellite antenna was designed by applying the chosen values of design factors, and variation in deployable satellite antenna during satellite maneuver was observed through simulation.

Development of Thermal Performance Prediction for Large Planar Military Antenna with Multi-Cooling Channels (다중 냉각유로가 적용된 수랭식 군사용 대면적 안테나의 열성능 예측 기술)

  • YeRyun Lee;SungWook Jang;PilGyeong Choi;NohJin Kwak;JunJung Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.43-50
    • /
    • 2024
  • Large planar military antenna boasts a range of electrical components, including TRA(Transmit-Receive Assembly), signal processors, etc. which engage in computations and calculations. These processes generate a significant amount of heat, leading to unforeseen consequences for the equipment. To mitigate these adverse effects, it's imperative to implement a cooling system that can effectively reduce heat-related issues. Given the antenna's intricate nature and the multitude of components it houses, a two-step estimation process is necessary. The first step involves a comprehensive model calculation to determine the total flow characteristics, while the second step entails a thermal analysis of individual TRA set. In this study, we depicted an antenna set using simplified 3D models of its components, considering their material and thermal properties. The sequential analysis process facilitated the calculation of branched flow rates, providing insights into the individual TRA. This approach also allowed us to design a cooling system for the TRA set, assessing its thermal stability in high-temperature environments. To ensure the optimal performance of TRA, breaking down the analysis into stages based on the cooling system's structure can assist operators in predicting numerical results more effectively.

Operating Characteristics of Superconducting Wireless Power Transfer System for Electric Vehicle Charging (전기차 충전을 위한 초전도 무선전력전송 시스템의 동작 특성)

  • Chung, Yoon-Do;Lee, Chang-Young;Kim, Dae-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.22-23
    • /
    • 2015
  • As wireless power transfer (WPT) technology using strongly coupled electromagnetic resonators is a recently explored technique to realize the large power delivery and storage without any cable or wire, this technique is required for diffusion of electric vehicles (EVs) since it makes possible a convenient charging system. Typically, since the normal conducting coils are used as a transmitting coil in the CPT system, there is limited to deliver the large power promptly in the contactless EV charging system. From this reason, we proposed the combination CPT technology with HTS transmitting antenna, In this study, we examined the improvement of transmission efficiency and properties for HTS and copper antennas, respectively, at 30 cm distance. Thus, we obtained improved transfer efficiency with HTS antenna over 10% compared with copper antenna

  • PDF

Capacity Characteristics of the Indoor Propagation Channel for MIMO System at 5 GHz (5GHz 대역 MIMO 시스템에 대한 실내 전파 채널용량 특성)

  • Ryu, Seong-Hyun;Kim, Jung-Ha;Kwon, Se-Woong;Yoon, Young-Joong
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.43-46
    • /
    • 2003
  • This paper presents capacity characteristics of the indoor LOS(Line-Of-Sight) propagation channel for MIMO system at 5GHz. The distance between antenna elements, their moving path, and number of transmitting and receiving antennas can be determined by wanted eigen-vlaue, and channel capacity of the MIMO communication channel using only reliable simulation without measurements. The simulation uses 3D Ray tracing and patch scattering model to which electromagnetic material constants are applied. As distance between antenna elements increases, distribution of the eigen-value show a tendency to decrease, but channel capacity increases in LOS environment. However, despite of short distance between antenna elements, large value of channel capacity is obtained in positions which have high AS. When the position of receiver antennas are shifted, channel capacity hardly changed, and as number of antenna elements increases, channel capacity also increases regularly.

  • PDF