• Title/Summary/Keyword: large MIMO

Search Result 106, Processing Time 0.019 seconds

Analyses of Larg Cell Area MCFC System Dynamics (대면적 용융탄산염 연료전지 시스템 동특성 분석)

  • 강병삼;고준호;이충곤;임희천
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.592-604
    • /
    • 1999
  • The steady state and dynamic characteristics of large cell area MCFC stacks were analyzed to solve the problems such as temperature difference generated in stacks and pressure difference between anode and cathode. Manipulated variables (current density, duel utilization rate, oxidant utilization rate) and controlled variables (temperature difference, anode and cathode pressure difference) which had an important effect on the MCFC stack performance were determined using operation results of two types of MCFC stacks (5kW (3,000 $\textrm{cm}^2$, 20 ea). 3kW (6,000 $\textrm{cm}^2$, 5ea)). The stability and transfer function representing system dynamics were obtained by steady state gain rate which showed the relative change between MVs and CVs. The transfer function was a 3$\times$3 matrix and a typical first order system without time delay. The optimal operating condition of large cell area MCFC stacks could be determined by analyzing dynamic characteristics. In case of a 5 kW MCFC stack, pressurized operation with recycle flow should be used to control the outlet temperature less than 68$0^{\circ}C$ and to control the MCFC system effectively. MIMO control or decoupler should be used to remove the interaction between MVs and CVs. This result will be used as important data in determining the control structure design and operation mode of large cell area MCFC systems in the future.

  • PDF

Tactical Beamforming for Anti-Jamming Under Limited Feedback (제한된 피드백 상황에서의 항재밍을 위한 전략적 빔형성)

  • Lim, Sung-Ho;Han, Sungmin;Lee, Jaeseok;Choi, Ji-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1410-1413
    • /
    • 2016
  • Array beamforming for anti-jamming means that jamming signals are superposed destructively, while superposing information signals constructively at a receiver. However, according to channel state variation, the anti-jamming performance of the beamforming can be degraded because of large beamwidth of the sidelobe and lower selectivity of the mainlobe. To mitigate this problem, we introduce a beamformed decoy signal which uses frequency band distinguished from the information signal to make the jammer concentrate its jamming power to a wrong target under limited feedback. In this paper, we show that the performance of the proposed scheme can approach that of optimal one with perfect feedback.

A User Detection Technique Based on Parallel Orthogonal Matching Pursuit for Large-Scale Random Access Networks (대규모 랜덤 액세스 네트워크에서 병렬 직교매칭퍼슛 기술을 이용한 사용자 검출 기법)

  • Park, Jeonghong;Jung, Bang Chul;Kim, Jinwoo;Kim, Jeong-Pil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1313-1320
    • /
    • 2015
  • In this paper, we propose a user detection technique based on parallel orthogonal matching pursuit (POMP) for uplink multi-user random access networks (RANs) with a number of users and receiver antennas. In general RANs, it is difficult to estimate the number of users simultaneously transmitting packets at the receiver because users with data send the data without grant of BS. In this paper, therefore, we modify the original POMP for the RAN and evaluate its performances through extensive computer simulations. Simulation results show that the proposed POMP can effectively detect activated users more than about 2%~8% compared with the conventional OMP in RANs.

Radius Optimization for Efficient List Sphere Decoding (효율적인 리스트 구복호기 검출방식을 위한 구반경의 최적화에 관한 연구)

  • Lee, Jae-Seok;Lee, Byung-Ju;Shim, Byong-Hyo
    • Journal of Broadcast Engineering
    • /
    • v.15 no.6
    • /
    • pp.742-748
    • /
    • 2010
  • Instead of using sphere decoding, list sphere decoding (LSD) has been introduced to increase the reliability of log-likelihood ratio (LLR) in recent soft decoding schemes employing iterative detection and decoding (IDD). Although LSD provides improved performance, it does not obtain complexity gain due to signal-to-noise ratio (SNR) increment as it detects large number of lattice points. Especially, its inefficient scenario arises when it has to search for lattice points which have small affect for obtaining LLR with high reliability. In this paper, we study an efficient algorithm to remove such lattice points, which results in complexity reduction based on radius optimization.

Beam selection method for millimeter-wave-based uplink hybrid beamforming systems (밀리미터파 기반 상향링크 하이브리드 빔포밍 시스템을 위한 빔선택 방법)

  • Shin, Joon-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.818-823
    • /
    • 2016
  • Millimeter wave (mm-wave) communication systems provide high data rates owing to the large bandwidths available at mm-wave frequencies. Recently, analogue and digital combined beamforming, namely "hybrid beamforming" has drawn attentions owing to its ability to realize the required link margins in mm-wave systems. Taking into account the radio frequency (RF) hardware limitations, such as the analogue phase shifter gain constraint and the low resolution of the phase controller, we introduce an uplink hybrid beamforming system that includes discrete Fourier transform (DFT) based "fixed" analogue beamforming. We adopt a zero-forcing (ZF) multiple-input multiple-output (MIMO) equalizer to eliminate the uplink inter-user interferences. Moreover, to improve the sum-rate performances, we propose a transmit beam selection algorithm which makes the uplink effective channels, i.e., the beamformed channels, become near orthogonal. The effectiveness of the proposed beam selection algorithm was verified through numerical simulations.

An exploratory study of stress wave communication in concrete structures

  • Ji, Qing;Ho, Michael;Zheng, Rong;Ding, Zhi;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.135-150
    • /
    • 2015
  • Large concrete structures are prone to cracks and damages over time from human usage, weathers, and other environmental attacks such as flood, earthquakes, and hurricanes. The health of the concrete structures should be monitored regularly to ensure safety. A reliable method of real time communications can facilitate more frequent structural health monitoring (SHM) updates from hard to reach positions, enabling crack detections of embedded concrete structures as they occur to avoid catastrophic failures. By implementing an unconventional mode of communication that utilizes guided stress waves traveling along the concrete structure itself, we may be able to free structural health monitoring from costly (re-)installation of communication wires. In stress-wave communications, piezoelectric transducers can act as actuators and sensors to send and receive modulated signals carrying concrete status information. The new generation of lead zirconate titanate (PZT) based smart aggregates cause multipath propagation in the homogeneous concrete channel, which presents both an opportunity and a challenge for multiple sensors communication. We propose a time reversal based pulse position modulation (TR-PPM) communication for stress wave communication within the concrete structure to combat multipath channel dispersion. Experimental results demonstrate successful transmission and recovery of TR-PPM using stress waves. Compared with PPM, we can achieve higher data rate and longer link distance via TR-PPM. Furthermore, TR-PPM remains effective under low signal-to-noise (SNR) ratio. This work also lays the foundation for implementing multiple-input multiple-output (MIMO) stress wave communication networks in concrete channels.