• Title/Summary/Keyword: large MIMO

Search Result 107, Processing Time 0.021 seconds

Effects of Channel Aging in Massive MIMO Systems

  • Truong, Kien T.;Heath, Robert W. Jr.
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.338-351
    • /
    • 2013
  • Multiple-input multiple-output (MIMO) communication may provide high spectral efficiency through the deployment of a very large number of antenna elements at the base stations. The gains from massive MIMO communication come from the use of multi-user MIMO on the uplink and downlink, but with a large excess of antennas at the base station compared to the number of served users. Initial work on massive MIMO did not fully address several practical issues associated with its deployment. This paper considers the impact of channel aging on the performance of massive MIMO systems. The effects of channel variation are characterized as a function of different system parameters assuming a simple model for the channel time variations at the transmitter. Channel prediction is proposed to overcome channel aging effects. The analytical results on aging show how capacity is lost due to time variation in the channel. Numerical results in a multicell network show that massive MIMO works even with some channel variation and that channel prediction could partially overcome channel aging effects.

Performance Analysis of MRT-Based Dual-Polarized Massive MIMO System with Space-Polarization Division Multiple Access

  • Hong, Jun-Ki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.4006-4020
    • /
    • 2018
  • In recent years, one of the most remarkable 5G technologies is massive multiple-input and multiple-output (MIMO) system which increases spectral efficiency by deploying a large number of transmit-antennas (eg. tens or hundreds transmit-antennas) at base station (BS). However, conventional massive MIMO system using single-polarized (SP) transmit-antennas increases the size of the transmit-array proportionally as the number of transmit-antennas increases. Hence, size reduction of large-scale transmit-array is one of the major concerns of massive MIMO system. To reduce the size of the transmit-array at BS, dual-polarized (DP) transmit-antenna can be the solution to halve the size of the transmit-array since one collocated DP transmit-antenna deploys vertical and horizontal transmit-antennas compared to SP transmit-antennas. Moreover, proposed DP massive MIMO system increases the spectral efficiency by not only in the space domain but also in the polarization domain whereas the conventional SP massive MIMO system increases the spectral efficiency by space domain only. In this paper, the comparative performance of DP and SP massive MIMO systems is analyzed by space division multiple access (SDMA) and space-polarization division multiple access (SPDMA) respectively. To analyze the performance of DP and SP massive MIMO systems, DP and SP spatial channel models (SCMs) are proposed which consider depolarized propagation channels between transmitter and receiver. The simulation results show that the performance of proposed 32 transmitter (Tx) DP massive MIMO system improves the spectral efficiency by about 91% for a large number of user equipments (UEs) compare to 32Tx SP massive MIMO system for identical size of the transmit-array.

Performance analysis of large-scale MIMO system for wireless backhaul network

  • Kim, Seokki;Baek, Seungkwon
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.582-591
    • /
    • 2018
  • In this paper, we present a performance analysis of large-scale multi-input multi-output (MIMO) systems for wireless backhaul networks. We focus on fully connected N nodes in a wireless meshed and multi-hop network topology. We also consider a large number of antennas at both the receiver and transmitter. We investigate the transmission schemes to support fully connected N nodes for half-duplex and full-duplex transmission, analyze the achievable ergodic sum rate among N nodes, and propose a closed-form expression of the achievable ergodic sum rate for each scheme. Furthermore, we present numerical evaluation results and compare the resuts with closed-form expressions.

Low-Complexity Massive MIMO Detectors Based on Richardson Method

  • Kang, Byunggi;Yoon, Ji-Hwan;Park, Jongsun
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.326-335
    • /
    • 2017
  • In the uplink transmission of massive (or large-scale) multi-input multi-output (MIMO) systems, large dimensional signal detection and its hardware design are challenging issues owing to the high computational complexity. In this paper, we propose low-complexity hardware architectures of Richardson iterative method-based massive MIMO detectors. We present two types of massive MIMO detectors, directly mapped (type1) and reformulated (type2) Richardson iterative methods. In the proposed Richardson method (type2), the matrix-by-matrix multiplications are reformulated to matrix-vector multiplications, thus reducing the computational complexity from $O(U^2)$ to O(U). Both massive MIMO detectors are implemented using a 65 nm CMOS process and compared in terms of detection performance under different channel conditions (high-mobility and flat fading channels). The hardware implementation results confirm that the proposed type1 Richardson method-based detector demonstrates up to 50% power savings over the proposed type2 detector under a flat fading channel. The type2 detector indicates a 37% power savings compared to the type1 under a high-mobility channel.

A Space Division Multiple Access Technique for Downlink MIMO Systems (하향링크 MIMO 시스템을 위한 공간분할 다중접속 기술)

  • Rim, Min-Joong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9A
    • /
    • pp.1022-1030
    • /
    • 2004
  • The next generation cellular radio systems require high data rate transmission and large system capacity In order to meet these requirements, multiple antennas can be used at the base and mobile stations, forming MIMO(multiple-input, multiple-output) channels This paper considers a downlink MIMO system assuming a large number of base station antennas, a small number of mobile station antennas, and rich-scattering, quasi-stationary, and flat-fading channel environments When the channel state information is given at the base station in a single user system, a MIMO technique with SVD(singular value decomposition) and water-filling can achieve the maximal downlink channel capacity. In multi-user environments, however, SDMA(space division multiple acces) technique can be used to further increase the total channel capacity supported by the base station This paper proposes a MIMO SDMA technique which can transmit parallel data streams to each of multiple users. The proposed method. can achieve higher total channel capacity than SVD-based MIMO techniques or conventional SDMA using smart antennas.

Optimal Number of Users in Zero-Forcing Based Multiuser MIMO Systems with Large Number of Antennas

  • Jung, Minchae;Kim, Younsun;Lee, Juho;Choi, Sooyong
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.362-369
    • /
    • 2013
  • The optimal number of users achieving the maximum sum throughput is analyzed in zero-forcing (ZF) based multiuser multiple-input multiple-output (MIMO) systems with a large number of base station (BS) antennas. By utilizing deterministic ergodic sum rates for the ZF-beam forming (ZF-BF) and ZF-receiver (ZF-R) with a large number of BS antennas [1], [2], we can obtain the ergodic sum throughputs for the ZF-BF and ZF-R for the uplink and downlink frame structures, respectively. Then, we can also formulate and solve the optimization problems maximizing the ergodic sum throughputs with respect to the number of users. This paper shows that the approximate downlink sum throughput for the ZF-BF is a concave function and the approximate uplink sum throughput for the ZF-R is also a concave function in a feasible range with respect to the number of users. The simulation results verify the analyses and show that the derived numbers of users provide the maximum sum throughputs for the ZF-BF as well as ZF-R in multiuser MIMO systems with a large number of BS antennas.

Achievable Sum Rate Analysis of ZF Receivers in 3D MIMO Systems

  • Li, Xingwang;Li, Lihua;Xie, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1368-1389
    • /
    • 2014
  • Three-dimensional multiple-input multiple-output (3D MIMO) and large-scale MIMO are two promising technologies for upcoming high data rate wireless communications, since the inter-user interference can be reduced by exploiting antenna vertical gain and degree of freedom, respectively. In this paper, we derive the achievable sum rate of 3D MIMO systems employing zero-forcing (ZF) receivers, accounting for log-normal shadowing fading, path-loss and antenna gain. In particular, we consider the prevalent log-normal model and propose a novel closed-form lower bound on the achievable sum rate exploiting elevation features. Using the lower bound as a starting point, we pursue the "large-system" analysis and derive a closed-form expression when the number of antennas grows large for fixed average transmit power and fixed total transmit power schemes. We further model a high-building with several floors. Due to the floor height, different floors correspond to different elevation angles. Therefore, the asymptotic achievable sum rate performances for each floor and the whole building considering the elevation features are analyzed and the effects of tilt angle and user distribution for both horizontal and vertical dimensions are discussed. Finally, the relationship between the achievable sum rate and the number of users is investigated and the optimal number of users to maximize the sum rate performance is determined.

Interference Management by Vertical Beam Control Combined with Coordinated Pilot Assignment and Power Allocation in 3D Massive MIMO Systems

  • Zhang, Guomei;Wang, Bing;Li, Guobing;Xiang, Fei;lv, Gangming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2797-2820
    • /
    • 2015
  • In order to accommodate huge number of antennas in a limited antenna size, a large scale antenna array is expected to have a three dimensional (3D) array structure. By using the Active Antenna Systems (AAS), the weights of the antenna elements arranged vertically could be configured adaptively. Then, a degree of freedom (DOF) in the vertical plane is provided for system design. So the three-dimension MIMO (3D MIMO) could be realized to solve the actual implementation problem of the massive MIMO. However, in 3D massive MIMO systems, the pilot contamination problem studied in 2D massive MIMO systems and the inter-cell interference as well as inter-vertical sector interference in 3D MIMO systems with vertical sectorization exist simultaneously, when the number of antenna is not large enough. This paper investigates the interference management towards the above challenges in 3D massive MIMO systems. Here, vertical sectorization based on vertical beamforming is included in the concerned systems. Firstly, a cooperative joint vertical beams adjustment and pilot assignment scheme is developed to improve the channel estimation precision of the uplink with pilots being reused across the vertical sectors. Secondly, a downlink interference coordination scheme by jointly controlling weight vectors and power of vertical beams is proposed, where the estimated channel state information is used in the optimization modelling, and the performance loss induced by pilot contamination could be compensated in some degree. Simulation results show that the proposed joint optimization algorithm with controllable vertical beams' weight vectors outperforms the method combining downtilts adjustment and power allocation.

A Simple Toeplitz Channel Matrix Decomposition with Vectorization Technique for Large scaled MIMO System (벡터화 기술을 이용한 대규모 MIMO 시스템의 간단한 Toeplitz 채널 행렬 분해)

  • Park, Ju Yong;Hanif, Mohammad Abu;Kim, Jeong Su;Song, Sang Seob;Lee, Moon Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.21-29
    • /
    • 2014
  • Due to enormous number of user and limited memory space, the memory saving is become an important issue for big data service these days. In the large scaled multiple-input multiple-output (MIMO) system, the Teoplitz channel can play the significance rule to improve the performance as well as power efficiency. In this paper, we propose a Toeplitz channel decomposition based on matrix vectorization. Here we use Toeplitz matrix to the channel for large scaled MIMO system. And we show that the Toeplitz Jacket matrices are decomposed to Cooley-Tukey sparse matrices like fast Fourier transform (FFT).

MIMO Capacity, Level Crossing Rates and Fades: The Impact of Spatial/Temporal Channel Correlation

  • Giorgetti, Andrea;Smith, Peter J.;Shafi, Mansoor;Chiani, Marco
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.104-115
    • /
    • 2003
  • It is well known that Multiple Input Multiple Output (MIMO) systems offer the promise of achieving very high spectrum efficiencies (many tens of bit/s/Hz) in a mobile environment. The gains in MIMO capacity are sensitive to the presence of spatial and temporal correlation introduced by the radio environment. In this paper, we examine how MIMO capacity is influenced by a number of factors e.g., a) temporal correlation b) various combinations of low/high spatial correlations at either end, c) combined spatial and temporal correlations. In all cases, we compare the channel capacity that would be achievable under independent fading. We investigate the behaviour of "capacity fades," examine how often the capacity experiences the fades, develop a method to determine level crossing rates and average fade durations and relate these to antenna numbers. We also evaluate the influence of channel correlation on the capacity autocorrelation and assess the fit of a Gaussian random process to the temporal capacity sequence. Finally we note that the particular spatial correlation structure of the MIMO channel is influenced by a large number of factors. For simplicity, it is desirable to use a single overall correlation measure which parameterizes the effect of correlation on capacity. We verify this single parameter concept by simulating a large number of different spatially correlated channels.