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MIMO Capacity, Level Crossing Rates and Fades: The
Impact of Spatial/Temporal Channel Correlation

Andrea Giorgetti, Peter J. Smith, Mansoor Shafi, and Marco Chiani

Abstract: 1t is well known that Multiple Input Multiple Output
(MIMO) systems offer the promise of achieving very high spectrum
efficiencies (many tens of bit/s/Hz) in a mobile environment. The
gains in MIMO capacity are sensitive to the presence of spatial and
temporal correlation introduced by the radio environment. In this
paper, we examine how MIMO capacity is influenced by a num-
ber of factors e.g., a) temporal correlation b) various combinations
of low/high spatial correlations at either end, ¢) combined spatial
and temporal correlations. In all cases, we compare the channel
capacity that would be achievable under independent fading. We
investigate the behaviour of “capacity fades,” examine how often
the capacity experiences the fades, develop a method to determine
Ievel crossing rates and average fade durations and relate these to
antenna numbers. We also evaluate the influence of channel corre-
lation on the capacity autocorrelation and assess the fit of a Gaus-
sian random process to the temporal capacity sequence. Finally we
note that the particular spatial correlation structure of the MIMO
channel is influenced by a large number of factors. For simplic-
ity, it is desirable to use a single overall correlation measure which
parameterizes the effect of correlation on capacity. We verify this
single parameter concept by simulating a large number of different
spatially correlated channels.

Index Terms: MIMO systems, Shannon capacity, space-time corre-
lation.

I. INTRODUCTION

Since the pioneering work of Winters [1], Telatar [2], Fos-
chini and Gans [3], Multiple Input Multiple Output (MIMO)
systems have received considerable attention in recent years as
they have the potential to provide quantum leaps in capacity [4].
The gains in MIMO shown in [3] are for independent fading
amongst the antenna elements. More recently, several studies
have addressed the issue of correlated fading, including work
on measurements and models [5]-{10], the effects of correla-
tion [5], [7], [11], [12] and large system results {13]-[15]. In
order to fully evaluate the impacts of correlation on MIMO ca-
pacity, one needs to consider the combined effects of all sources
of channel degradation pertinent to a MIMOQO channel, namely
angle spread of the arriving multipath signal, Doppler spectrum
and the delay power spectrum. In the open literature, there ap-
pear to be no expressions for a combined spectrum that take into
account all of the three types of mobile channel spread men-
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tioned above. If, however, the constituent spatial, temporal, and
spectral correlations are assumed independent, then a combined
correlation is simply the product of the constituent correlations.
Abdi and Kaveh [8] have developed closed form expressions for
spectral-temporal correlation that take into account various pa-
rameters of interest such as angle spreads at the base station and
user end, array configurations, Doppler spreads, etc. They have
used a von Mises distribution for the angles of arrival and depar-
ture. The wireless standards body 3GPP has published a stan-
dardized set of MIMO propagation models [9] that define key
parameters and distributions needed to evaluate the combined
spatial/temporal/spectral correlation function. In this paper, we
have considered the standardized propagation model in [9] and
only considered the effects of spatial and temporal correlation.
The variation of capacity over time leads to the notion of finding
periods of time where the capacity lies below a given value. We
refer to these periods as “capacity fades” [16]. In the area of
temporal capacity behaviour, we address the following issues:

e With temporal correlation only, how often does the capacity
experience fades and what are their duration?

e Are the rates of occurrence of capacity fades and their dura-
tions influenced by antenna numbers?

e How do the answers to the above change with the introduc-
tion of varying amounts of spatial correlation?

e Can the temporal and spatial correlations be considered sep-
arable?

e What is the shape of the capacity autocorrelation function
(ACF): How does it relate to the channel ACF and how does
it change with antenna numbers?

e Can the temporal capacity sequence be modeled by a simple
Gaussian process?

Although the area of correlated MIMO channels is now well
studied [5]-{15], the temporal capacity behaviour under spatio-
temporal correlation is not well known and provides the fo-
cus for this paper. By using a discrete time Gaussian process
approximation for the capacity sequence (validated by simula-
tions), we provide closed form expressions for the level crossing
rates (LCR) and average fade durations (AFD) of the capacity.
However, the closed form expressions require a knowledge of
the correlation between successive capacity values. We show
how this correlation can be approximated for single input mul-
tiple output (SIMO) and multiple input single output systems
(MISO) systems. We also provide a standard time series model
for the capacity sequence and show that an integrated autore-
gressive moving average (ARIMA) model can be fitted to the
capacity sequence. We verify the accuracy of the ARIMA model
by comparing the ACF’s of the differentiated capacity sequence
via simulation and prediction. Although it is conjectured that
under certain correlation conditions the capacity process will be-
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Fig. 1. The one-ring scatterers model for MIMO systems. The number
of transmitting and receiving antennas are nr and n g, respectively.

come Gaussian for large systems, a proof is not attempted here.

We also consider the effect of spatial correlation on ergodic
or mean capacity. It is known that MIMO capacity severely de-
grades with spatial correlation. Unfortunately, the correlations
encountered are functions of many parameters, i.e., mean an-
gles of arrival and departure, antenna spacings and layout, angle
spreads, distributions of angles. It would be highly desirable
to characterize the effect of the whole correlation structure on
capacity with a single parameter that represents in some sense
the overall channel correlation [17]. For example, if you wish
to assess the effect of channel correlation on capacity variance,
then it would be ideal to plot capacity variance against a single
correlation measure. The alternative is to run many scenarios
with no clear idea as to how to order the level of correlation. To
date, such measures are little known and essentially adhoc, as in
the “average” correlation used in [9]. In this area, we answer the
following questions:

e Can a spatially correlated channel be described by a single
parameter?

¢ How does mean capacity change with the single parameter
given antenna numbers, signal-to-noise ratio (SNR), etc.?

In Section II, we describe the MIMO propagation model and
show that temporal and spatial correlations may be treated in-
dependently. In Section HI we investigate capacity fades for
spatially/temporally correlated MIMO systems and fit a Gaus-
sian random process to the temporal capacity sequence. The
major part of Section IV is concerned with the development and
comparison of single correlation parameters to describe the rela-
tionship between capacity and channel correlation. In Section V,
we present numerical results in terms of capacity, level crossing
rates, and average fade durations. In addition, extensive sim-
ulations are shown that support the use of a single correlation
parameter to represent a complex physical scenario. Finally in
Section VI, we give some conclusions.

II. MIMO CHANNEL MODEL

Let us consider a wireless system with (ny, ng) antennas as
shown in Fig. 1 arranged as linear arrays at either end. The ele-
ment spacing at the transmitter (TX) and the receiver (RX) end
is denoted by dr and dg, respectively. We assume a flat fading
channel model with possible correlation between the antenna ar-
ray elements at both the base station and mobile station ends.

A. Propagation Model

The correlation model is derived from the well known model
of a ring of scatterers surrounding a receive antenna array [5].
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The model assumes the distribution of scatterers is such that an-
gles of departure ¢ at the base station follow a Laplacian dis-
tribution, and a uniform distribution for arrival angles 6 [9] at
the mobile station. The distances d and dp are assumed small
relative to both the distance between the two ends of the commu-
nications link and the distance between the scatterers and the ar-
rays. Hence, each transmitter illuminates the same set of scatter-
ers. This leads to a separable correlation structure as discussed
below. Let h,,;, be the complex channel coefficient between the
receiver m, m = 1,--- ,ng and transmitter p, p = 1,- -+ , np,
then the correlation between two coefficients is given by

E [hy,, 0 R

myp1 M2 Pz] = ]E [6j o d(pl’pf) = ej m d(mlm)tz) = :] 3
1)
where A is the carrier wavelength, d(m, m) is the distance be-
tween the receive antennas m and mo, d(p1, p2) is the distance
between transmit antennas p; and po, and E [-] is mathemati-
cal expectation. The expectations are taken with respect to the
random position of scatterers, i.e., with respect to the random
variables ¢ and 6.

The MIMO channel is therefore characterized by the ng x ny
channel matrix H with elements h;;. In a rich scattered fre-
quency non-selective environment, the elements of H are com-
plex Gaussian random variables with unit energy and their time
variations are governed by the Jakes [18] fading process. In this
paper, we have not considered the key hole channels where the
elements of H are products of two independent Gaussian ran-
dom variables rather than single complex Gaussians. By stack-
ing up the columns of H, we can construct the channel vector
h = vec(H) for this system as

Y S )

where ()7 denotes matrix transpose. Then the channel (spatial)
correlation matrix is defined as

h = [hl,l Ce hnva e hl,nT .

R =E [hh'], €)

where () is the transpose conjugate operator. Now, R can be
found given the statistical distributions of ¢ and 4 and by us-
ing (1) and (2) in (3). Usually, the channel correlations are
separable or at least approximately so. For example in our
model, the expectation in (1) is given by a product of cor-
relations between antenna elements at the transmitter and re-
ceiver end respectively, i.e., pI  pR  [5], [8], [9] where
pﬁn,mz =E [e]2ﬂd(m1,m2)sm 9//\] .

Let us now define the symmetrical correlation matrices at the

transmitter and receiver as ®r = [p7 ] and ¥y =
’ T T

[pi,] nnxn, Then it can be shown that under the antenna ele-
ment spacing and other conditions described above, it is possible
to write [5], [8], [9]:

R=¥,r¥pg, “)

where ® is the Kronecker product. This is true in our model and
allows us to independently vary correlation at either end and ex-
amine the consequential impact on capacity. Various measure-
ments have been presented in the literature which support the
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accuracy of the Kronecker form of the correlation matrix, for
example [10].

Since we want to take into account not only spatial but also
temporal correlation, we assume that the time variations of the
channel coefficients in H are governed by the well known Jakes
fading process [18]. So in the following, we use H when we
consider only spatial correlation and H(t) for both spatial and
temporal behaviour.

In conclusion, we can consider both temporal and spatial cor-
relation and, by varying the maximum Doppler frequency fp,
element spacings and mean angles of arrival/departure, various
scenarios of high and low correlation can be simulated.

B. Separability of Spatio/Temporal Correlations

Let us consider the vector u = vec(U) obtained by taking the
columns of a np X ny matrix U of zero-mean independent and
identically distributed (i.i.d) complex Gaussian entries with unit
energy. For the purpose of simulation, given the correlation ma-
trix R, the correlated channel coefficients h are simply obtained
from the vector u by means of

h=Wu, 5)

where ¥ =
h[5],ie.,

[4:;] is the square root of the correlation matrix of
R=0. ¥ (6)

Now, introducing temporal correlation between the i—th ele-
ment of u(t) and the i—th element of u(t — 7), for the elements
of h(t) we have

Jur(t —7)

Elh,(t)hi(t — 7)) = [Zz%wlku
= ZZ% Vi Blu; (tug(t — 7).

But the elements of u(t) are independent, so only one sum
survives

(7

Efh;(t)h; (t —1)] = Zwij 1//;; E[uj(t)u;k(t -7). (8

Now, assuming that all the elements u;(t) have the same tem-
poral correlation p,(7), i.e.,

pu(T) = Elu;(ui(t —7)] Vi=1---ng-nr. (9
We obtain
E[h ( )h’*(tiT ZQZ)LJ "wa]
(10)

) (W] = ).

This proves that the spatial correlation does not alter the tem-
poral correlation already present between the elements of u(z)
and uft - 7).
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Therefore, under the assumption that all the channels expe-
rience the same temporal correlation (this is a quite reasonable
assumption), it is always possible to simulate a MIMO chan-
nel starting from spatially independent channels U(t) with a
prescribed temporal correlation and, subsequently, introducing
the spatial correlation by means of (5) in order to obtain a spa-
tio/ftemporal correlated channel H(t). To be specific, we gen-
erate ny X np independent time varying Gaussian processes
using the Jakes-like generator in {19]. At each time point, ¢, the
ng X np Gaussians are stored in a channel matrix U(¢). Spatial
correlation is then mduced by pre and post multiplication giving

the sequence H(t) = ¥ 3 2U(t)®2. 2. Note that this induces the
same correlation structure as (5) and is more compact [5].

III. MIMO CAPACITY: TEMPORAL BEHAVIOUR

We consider a single user n; — nyp MIMO system operating
in a correlated fading environment discussed in Section II. The
received signal, r, is given by

r=Hs+n, an

where r is the np x 1 received signal, s is the ny x 1 transmitted
signal, and n is an ng x 1 vector of i.i.d additive white Gaussian
noise terms normalized so that the elements have unit magnitude
variance. The total power of s is constrained to P. H is the
ng X nr channel matrix. Assuming equal power uncorrelated
sources (optimum for the case when the transmitter does not
know the channel or the channel statistics), the capacity is given

by [3]

P
C = log, det (InR + ?HHT> bit/s/Hz.  (12)
T

If the channel is known, then waterfilling can be used [2]. If
only the channel statistics are known through covariance feed-
back, then improvements over equal power allocation are also
possible [20], [21]. Note that in all this work, we assume the
“quasi-static” case [3] where the channel varies randomly from
burst to burst. Within a burst, the channel is assumed fixed and
it is also assumed that sufficient bits are transmitted for the stan-
dard infinite time horizon of information theory to be meaning-
ful.

The capacity formula is now extremely well-known and
the simple process of replacing H by a sequence of spatio-
temporally correlated channel matrices H(i) for i = 1,2, --
results in a temporal sequence of capacity values. The mod-
elling of the channel matrices is described in Section II.

A. Level Crossing Rates and Fade Durations

It is now reasonably well known that for independent fad-
ing, the capacity of MIMO systems is approximately Gaus-
sian even for small numbers of antennas. For larger numbers,
the approximation improves and suitably standardized (see be-
low), the capacity converges to the Gaussian distribution as
nr — oo,nr — oo, and the ratioc ng/nr tends to a con-
stant {22]-[26]. It is sensible therefore to investigate whether the
temporally (and spatially) correlated sequence of capacity val-
ues might also be well approximated by a Gaussian sequence.
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Fig. 2. Complementary cdf (ccdf) of the capacity, (4,4) and (6,6) MIMO
for P = 20dB, with and without spatial correlation (continuous line)
and the capacity ccdf predicted with the Gaussian assumption.

Whether the Gaussian approximation is accurate for correlated
fading scenarios is less well-known. Hence in Fig. 2, we com-
pare the complementary cumulative distribution function (ccdf)
of the data with a Gaussian ccdf with the same mean and vari-
ance. The correlation scenarios used are described in Section V
and the parameters given in Table I. The agreement is excellent
and we proceed to investigate whether the temporal behaviour
can also be approximated using Gaussian process results.

In order to investigate the temporal behaviour of the capac-
ity, we focus on level crossing rates across a level Cr (denoted
LCR(C7)), and average fade durations (periods of time spent
with C' < Crp denoted AF D(C'r)). For any discrete time Gaus-
sian model, the LCR can be calculated as shown in APPENDIX
A. We state the result below. Let p. be the correlation between
successive capacity values, u be the mean capacity, and o2 the
capacity variance. Defining the standardized capacity values as
C = (C — p)/o, we can express the LCR as:

Cr 5
LCR(Cr) = F(Cr) — f(w)F(ﬁl——p%>dz, (13)
—p

— o c

where f(z) and F(x) are the density and distribution func-
tion respectively of the standard Gaussian distribution. Note
that this only requires the correlation parameter p.. In order
to model the capacity sequence more completely and obtain in-
formation beyond LCR’s, we could attempt to fit a particular
model, perhaps a Gaussian ARIMA((p,d,q) model, to the capac-
ity sequence. This is briefly investigated in item III-D below.
After the evaluation of the LCR, it can be related to the AFD
using the result [18]

- F(Cr
AFD(Cy) = _FCr)
LCR(Cy)
In Section V, we investigate how closely these simple Gaus-
sian process approximations match our discrete time simula-
tions. In APPENDIX B, we give another approach to computing

(14)
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Fig. 3. Normalized ACF of the capacity in spatially uncorrelated chan-
nels with P = 20dB.

the LCR based on a continuous time Gaussian model for the ca-
pacity sequence.

B. Autocorrelation Functions

Next, we take a look at the relationship between the temporal
behaviour of the channel and the capacity sequence itself.

In Fig. 3, the normalized ACF p.(7) of the capacity, for differ-
ent systems for a SNR of 20dB, is reported as a function of the
normalized time-lag 7 fp and compared to that of the channel
(Jo{277 fDp)), where fp is the doppler frequency, 7 = kT, k is
the time index, and 7' is the burst duration. In the following, we
choose fpT = 0.02. It is interesting to note that when the ACF
of the channel crosses zero, the ACF’s of the capacities are zero.
This is due to the fact that each channel is complex Gaussian:
therefore, if we consider a MIMO channel] at different instants
with a time-lag At such that the ACF of the channels are zero,
the two matrices H(¢) and H(¢ + At) have independent entries,
leading to independent capacities. In addition, the peaks of the
capacity ACF are given by the locations of the turning points in
the channel ACFE. Such a clear and simple relationship between
the channel and the capacity ACF’s is perhaps a little surprising
given the complexity of the capacity as a function of the chan-
nel. We also note that for the systems considered, the ACF has
only a small dependence on the number of antennas, even if a re-
duction of the amplitude of the oscillations can be observed for
higher order systems with equal number of transmit and receive
antennas.

C. Approximation of the ACE, LCR and AFD for SIMO and
MISO systems

Now, let us consider a SIMO system (1, n) with vector chan-
nel h = [hy,hs, - ,hy|T and complex channel gains h; =
hl + th, the capacity formula (12) reduces to

C =log,(1+ Ph'h)

bit/s/Hz, (15)
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Fig. 4. Comparison of the simulated ACF at P = 30dB with that pre-
dicted by means of the closed form approximation derived in Sec-
tion II-C.

where X £ h'h is a central chi-square distributed random vari-
able (r.v.) with 2 x n degrees of freedom, i.e., X ~ x3,. In
order to evaluate the ACF of the capacity in a closed form, we
consider the case where the SNR is high (P >> 1), so that

C ~ C = log, (P X). (16)

If we consider time-correlated channels, replacing the vector
h with a sequence of channel vectors h(¢) for¢ = 1,2, re-
sults in a temporal sequence of capacity values C(i). The ACF
Rz(k) of the capacity in this case is

Ro(k) = E[C()CG - k)]
= E[logy(P X (i) log,(P X(i — k). (17)
In particular, we are interested in the evaluation of the nor-
malized ACF
Ra(k) — 2
1o

pa(k) = ; (18)

Ol

where iz and o2 are the mean value and the variance of the ca-
pacity, respectively. Therefore, the evaluation of the normalized
ACF (18) requires the evaluation of

Re(k) — 2 = E[log, X (i) logy X (i — k)] — (E[log, X(8)])°,
19)
where [27]
()
E [log, X (3)] = T2’
and ¥(-) is the Euler’s digamma function [28, eq. 8.36]. In AP-
PENDIX C, the first expectation in (19) is evaluated as:

(20)

WIS P}zz(k) . .2 2
Rz(k) = . sy (171,1,2,n+ 1,ph(k)) +¥*(n), (21)

where 3F5 (-;-;-) is the generalized hypergeometric function
[28, eq. 9.14] and pj (k) is the normalized ACF of the under-
lying Gaussian channel (see APPENDIX C). Therefore, con-
sidering that 02 = ¢/(n)/In*(2), the normalized ACF of the
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Fig. 5. Comparison of the simulated LCR at P = 30dB with that pre-
dicted by means of the closed form approximation derived in Sec-
tion M-C.

capacity at high SNR becomes:

pi(k) 3Fs (1,1,1;2,n + 1; p (k)
ny'(n) '

In a similar manner, we could proceed for a (n, 1) MISO sys-
tem obtaining the same formula. Note that this formula is valid
whatever the ACF of the channel is.

Now, starting from (22), we can evaluate not only the ACF,
but also the level crossing rate (and consequently the AFD) by
using (13) and substituting p. with pz(1) which depends only
on pp(1). In Fig. 4, the comparison between the simulated ACF
at P = 30dB with that predicted by means of the closed form
approximation (22) for a MIMO (1, 5) system is reported. Note
that at high SNR (P = 30dB), our formula works very well.

In Fig. 5, the comparisons between the simulated LCR at P =
30dB with that predicted by means of (13) and (22) for (1, 5)
and (1,10) systems are reported. Note that at high SNR (P =
30dB) and for high-diversity systems, our approach works very
well. Furthermore, the approximation becomes good when the
number of antennas increases. Note however that the capacity
(15) does not tend to a Gaussian r.v. for large n, but rather the
logarithm of a Gaussian. This is because only one of the array
dimensions is being increased.

pe(k) = (22)

D. Model Fitting

Here, we investigate the possibility of fitting standard time se-
ries models to the capacity sequence. We consider an example
(4,4) MIMO system with P = 20dB, no spatial correlation and
fpT = 0.02. The sequence is generated as described in Sec-
tion II-B. A discrete time simulation of 300,000 points was used
giving the sequence {C(1),C(2),- - - } and an autoregressive in-
tegrated moving average (ARIMA) model [29] was fitted. We
used the most basic approach to model fitting [29]: First, differ-
encing the sequence until the ACF decayed away fairly rapidly
and then selecting the order of the AR and MA components by
inspecting the ACF and partial autocorrelation function (PACF).
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Fig. 6. ACF of the capacity second difference (V2C) in a spatially un-
correlated {4,4) MIMO channel for P = 20dB.

Parameter estimation was possible by maximum likelihood due
to the Gaussian assumption for the process. This approach led
to the ARIMAC(1,2,3) model given by

V2C(i) - 0.9397V2C(i — 1)
= e(i) — 1.9425¢(i — 1) + 1.3502 (i — 2)0.2716 ¢(s — 3),
(23)

where {¢()} is a white Gaussian noise sequence and V is the
difference operator, such that

V2C(i) = V(C(i) = C(i—1)) = C(i) —2C(i — 1)+ C(i — 2).
(24)
In Figs. 6 and 7, we plot the simulated ACF and PACF of
V2C(i) and the ACF/PACF given by the ARIMA model. As
can be seen, the agreement is reasonable so that Gaussian ran-
dom processes may be useful, not only in evaluating LCR’s and
AFD’s, but also in characterizing more detailed temporal be-
haviour. Note that formal tests of the ARIMA model were per-
formed, but predictably (as we have 300,000 data points), they
strongly rejected the model. This is due to the well known statis-
tical property that even extremely accurate models are rejected
given enough data.

IV. MIMO CAPACITY: PARAMETERIZING THE
EFFECTS OF SPATIAL CORRELATION

To completely define the spatial correlation structure, we
must specify the angular p.d.f’s of ¢ and §. We assume that
¢ follows a Laplacian distribution [9]

k )
16) = gy "

¢) € [_’/T +p, T+ ,u), (25)
where p is the average angle of arrival and k is a parameter
related to the angle spread o, i.c., the standard deviation of ¢:
0 =[(2—e (2 + 2%km + k212 /(K2 (1 — e F7))]5.
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Fig. 7. PACF of the capacity second difference (V2C) in a spatially
uncorrelated (4,4) MIMO channel for P = 20dB.

For k = 0 (isotropic scattering) we have f(¢) = 1/2, while
for k = oo the Laplacian distribution becomes a Dirac delta
function, concentrated at y. With this assumption, the elements
of the correlation matrix ¥ need to be evaluated by numerical
integration. At the receiver, we assume a uniform angle of ar-
rival so that f(0) = 1/2w, and the correlation matrix ¥ g has
elements

(26)

d(p, q
Pg.q:Jo(%T ()\ )>

In this section we define two different parameters that can be
used to characterize the amount of spatial correlation. Our aim
is to reparameterize the correlation which can be a function of
many parameters: Mean angles of arrival and departure, antenna
spacings and layout, angle spreads, distributions of angles, etc.
Hence, we attempt to measure the overall correlation by a single
parameter which accurately characterizes the effect of correla-
tion on capacity. Uses of this single parameter would include
plots of mean capacity, outage capacity, or capacity variance
against the single correlation measure.

A. A Norm of the Correlation Matrix R

In order to quantify the amount of spatial correlation intro-
duced by the propagation scenario and the geometry of the an-
tennas, we define a norm o, = ||R||, for p € {1,2,--- 00}
as a combination of the off-diagonal elements of the correlation
matrix R = [r;;] given by

. — @27

o = IR, 2 (—Z?é—'L) ,

where n = np - ng. With this definition, ||R||; is the average
of the off-diagonal elements, while |R||.c = max;,;(|v;;|) is
simply the maximum value. This measure is in the range be-
tween 0 and 1 and, in fact, when R = I, (uncorrelated case) we
have ||R||, = 0 Vp, while in the totally correlated case R = 1,,
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(1, is an x n matrix of all ones) we have ||R||, = 1 Vp. Note
that a1, o, vy, - - - put successively more weight on the larger
correlations.

B. The determinant of ¥t and ¥

Let us start from the capacity formula (12) that for the corre-
lated case can be expressed as

P
C = log, det (InR + —HH! )
nr
P (28)
~ log, det (InR + RU\PTUT) ,
T

where X ~ Y indicates that the random variables X and Y have
the same distribution and U is the 1.i.d. Gaussian matrix defined
in Section II-B.

Based on this result, another possible correlation measure is
suggested considering the capacity for high values of the SNR

— P
C =~ C = log,det <n—\IlRU\IITUT>
T

P
= nglog, (E) + log, det(UUT) (29

+ log, [det(¥ r)det(¥r)].

Therefore, for high SNR, the capacity in the correlated case
is approximately equal to the capacity of the uncorrelated case
plus a term log, () where o = det(¥ g) det(® ).

Hence, at high SNR, a represents the entire contribution of
the spatial correlation to the capacity. Note that the derivation
of C assumed that ng < n,. However, it is straightforward to
modify the approach for ng > ng and this leads to the same
parameter .. In Section V, we investigate the dependence of the
average capacity E[C] and the 10% outage capacity Cy; as a
function of this parameter even for low SNR.

In addition to the two correlation parameters defined above,
we also tried the correlation parameter defined by Mestre et al.
[12] (extended to the two-sided correlation scenario) and the ap-
proximate mean capacity formula of Martin and Ottersten [15].
Neither metric appeared to capture the effects of correlation as
well as a or a3. Hence, these results are not presented here.

As areference, it is easy to prove that the expected value E[C]
of the capacity for the totally correlated case (R = 1,,,,) is
the same as that for a SISO channel but with a SNR P multiplied
by ng, i.e.,

el/P‘nR

ElC] =~ n(2)

Ei (— L) bit/s/Hz, (30)
P ner

where Ei is the exponential integral function [28]. At the other
extreme, the mean capacity for the uncorrelated case is given by
Telatar [2].

V. NUMERICAL RESULTS

The simulation of MIMO channels with temporal correlation
only requires the generation of multiple complex waveforms
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Fig. 8. LCR of the capacity without spatial correlation: Comparison

between Gaussian process approximation and simulation for P =
20dB.

satisfying the following conditions. First, the real and imag-
inary parts are independent zero-mean random Gaussian pro-
cesses with identical ACF’s. Second, the complex waveforms
are independent so that the crosscorrelation function between
any two waveforms is zero. Therefore, the following results are
obtained using a method that improves Jakes’ simulator in or-
der to generate multiple Rayleigh fades, which agree with the
theoretical hypothesis above mentioned [19]. As an example,
employing N, = 16 oscillators, we can generate 72 different
channel waveforms (needed for a MIMO system with 6 trans-
mitting and receiving antennas) with a crosscorrelation function
whose modulus is less than 0.07.

Now, let us start by examining the numerical results on the
impact of spatial and temporal correlations on the capacity.
Fig. 8 shows the comparison of the simulated LCR of the ca-
pacity for (4,4) and (6,6) systems with that predicted by means
of the Gaussian process approximation discussed in Section 1II.
The LCR (13) is divided by the burst duration 7" and normal-
ized by the Doppler frequency fp, while in the abscissa there
is the capacity level Cr normalized by the mean E[C]. For this
simulation and for what follows the product, fpT is equal to
0.02. Note that the analytical model fits very well demonstrat-
ing the validity of the Gaussian approximation for the capacity,
not only for the first-order analysis [23], but also for the process
over time.

The normalized (with respect to fp) LCR and the normalized
AFD of the capacity for different MIMO systems with P =
20dB are reported in Fig. 9 and Fig. 10, respectively. Note that
in the abscissa there is the capacity fade probability or outage
probability P,,; = P{C < Cy}. This kind of normalization
allows us to better compare the burstiness of different systems
at the same outage probability. For example, we can fix P,,,, =
0.1 and look vertically from 0.1 to see the LCR’s for different
systems across the threshold Cr defined by P{C' < C7} = 0.1.
Hence, our comparison is of the LCR’s across the “equivalent”



GIORGETTI et al.: MIMO CAPACITY, LEVEL CROSSING RATES AND FADES...

ouT

Fig. 9. LCR of the capacity without spatial correlation for different MIMO
systems with P = 20dB. Note that in the abscissa there is the outage
probability.

1

10

P

ouT

Fig. 10. AFD of the capacity for the same systems shown in Fig. 9.

threshold for each system. The AFD curves are easily evaluated
taking into consideration formula (14). If we look at low P,;,
systems with high receive diversity, i.e., a high ng/ny ratio,
have low LC K and high AF D. Also atlow P,,;,low AFD can
be obtained with low numbers of antennas at both the transmitter
and receiver.

Now, introducing spatial correlation at transmit and receive
antennas as described in Section II, we evaluate its impact on
the first and second-order statistical properties of the capacity.
Here, we consider equally spaced elements at the TX as well
as the RX and three different cases of high spatial correlation:
At the TX, at the RX, and both TX-RX. For the correlation at
TX, we have considered three parameters: The average angle of
arrival (AOA) i, the angle spread o, and the distance between
the transmit antennas d. For the correlation at the RX, we con-
sider only the antenna spacing d; and a uniform distribution of

111
{ —— (4,4) uncorr.

! ———(44corrRX ‘
{4,4) corr. TX+RX \
—— (4 4) corr. TX
4——= (1,4) uncorr. ‘
o——O (4,1} uncorr.

i

1.5

e L
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Fig. 11. LCR for different spatial correlation at TX and RX with P =
20dB.

Table 1. The three different scenarios considered in Figs. 2 and 11.

] o u dr dgr

RX 200 0°  10A 0.2
X 5° 90° SA A
TX-RX | 5° 90° 5Xx 02X

the AOA that allow us to use a modified Jakes’ simulator for the
generation of the channel (remembering that the Jakes’ model is
based on the assumption of uniform scatterers on a circle around
the RX). In Table 1, the parameters employed in the following
results for the three cases are summarized.

In Fig. 2, we plot the complementary cumulative distribution
function (ccdf) P{C > Cr} of the capacity for (4,4) and (6,6)
systems, respectively, with and without spatial correlation, com-
pared with the Gaussian approximation to the capacity distribu-
tion and for a signal-to-noise ratio of 20dB. As for the Rayleigh
and Ricean cases already studied in [23], the Gaussian approxi-
mation does remarkably well considering the high spatial corre-
lations corresponding to the TX-RX scenario. The strong im-
pact of the spatial correlation is clear, reducing the capacity
by around 40%: A (6,6) system with this spatial correlation is
worse than an uncorrelated (4,4).

Concerning the impact of the spatial correlation on the
second-order statistics of the capacity, Fig. 11 shows the LCR
for a (4,4) system in the three correlated scenarios described
above and with P = 20dB. As a reference, the LCR’s for (4,4),
(4,1), and (1,4) systems without spatial correlation are reported.
For a fixed P,,;, the spatial correlation reduces the LCR and
therefore increases the average duration of capacity fades. For
the scenarios considered here, the impact of the correlation at
TX seems to be less than that at RX.

Now, let us examine the numerical results on the impact of
the spatial correlation on the mean capacity E[C] and the 10%
outage capacity Cy 1 via the two different parameters ap and o
given in Section I'V. In order to investigate the capacity degra-
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Table 2. Spatial correlation parameters for different scenarios.

Scenario 2,2) 4.4)
c wu dr dg a3 [logiga | as [loga
5° 0° 50 A 0.19 | -0.042 { 0.13 | -0.14
20° 0° A 0.5) | 0.26 | -0.077 | 0.18 | -0.25
20° 0° 10A 02X\ | 0451 -023 | 030 | -2.02
45°  45° X 02X ! 047 | -028 | 032 -2.19
20° 90° A 0.5A | 062 | -0.70 | 0.50 | -2.46
5° 90° 5X A 0.68 | -130 | 055 | -4.61
5° 90° 5\ 02X | 078 | -151 | 065 -6.56

dation as a function of these parameters, we generate up to 2000
scenarios by choosing randomly the 4-tuple (o, 1, dy, dr) for a
fixed nt, ng, and SNR P. Then, for each scenario, we evaluate
oy, o and we estimate E[C] and Cj; from 10000 instances of
the channel matrix H. After a simulation campaign, we chose
p = 3 as the best value for ||R||,, since it gave the best accuracy
in mean capacity prediction. Since oy, o, arg, -+ put succes-
sively more weight on the large correlations, it is unsurprising
that cs and o3 outperform ;. However, the gains in using .,
as 7 increases further then begin to drop.

In Table 2, there are some example scenarios and the corre-
sponding values a3 and « for (2,2) and (4,4) systems.

Fig. 12 displays E[C] and C ; for a (2,2) system at different
SNRs as a function of 3. The figure shows that the capacity
can be predicted accurately when the parameter is in the range
from 0 to 0.6 at 10dB and 0 to 0.5 at 20dB. Fig. 13 displays
E[C] and Cg ; for a (4,4) system at different SNRs as a function
of a3. The figure shows an increase in dispersion of the curves,
especially at P = 20dB, so that the capacity can be predicted
with less accuracy. Even so, the results are still good.

The capacity for a (2,2) system for different SNRs as a func-
tion of « is reported in Fig. 14. The parameter o seems to be
extremely good in predicting the capacity of a (2,2) system, giv-
ing virtually a direct correspondence between &, E[C], and Cj ;.
The same analysis for a (4,4) system is plotted in Fig. 15. Here,
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we can see an increase in the uncertainty of prediction except,
for example, for log;,(«) between —3 and 0 for P = 30dB.

Finally, in all these figures, the minimum value of the mean
capacity can be predicted by (30). As an example, for a (4,4)
system at P = 30dB we have E[C] = 11.13 bit/s/Hz. Overall,
the o parameter appears slightly better and we recommend this
correlation measure as a means of ordering the “overall” corre-
lation in spatially correlated channels.

V1. CONCLUSIONS

In this paper, we have studied the time-variations of the chan-
nel in MIMO systems. The analysis has been carried out in
terms of LCR’s and AFD’s of the (instantaneous) capacity, con-
sidering both spatially uncorrelated and spatially correlated en-
vironments, where the role of correlation at the TX is kept dis-
tinct from that at the RX_ First, it has been shown that a Gaussian
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first-order approximation is valid even for spatially correlated
channels. Then, a Gaussian approximation for the process de-
scribing the capacity vs. time has been presented and validated
(for moderate numbers of antennas) by means of simulations. It
has been shown that LCR’s and AFD’s are well approximated
by that of a Gaussian process. From a numerical point of view,
it has been shown that increasing the number of receiving an-
tenna decreases the level crossing rate, and at the same time in-
creases the average duration of capacity fades, for a fixed outage
probability. In addition, we have shown that spatial and tempo-
ral correlations are separable and that the shape of the capacity
ACF is dominated by the shape of the channel ACF. Further,
the capacity ACF is relatively insensitive to antenna numbers.
The temporal behaviour of the capacity has been modeled by a
Gaussian ARIMA process and good agreement observed in the
model ACF and PACF compared to the data. The major con-
tribution in the area of spatial correlation is an investigation of
the use of a single correlation parameter to predict mean capac-
ity and outage capacity over a wide range of physical scenatios.
We suggest two such correlation measures and show their utility
in predicting capacity.

APPENDIX A

Defining the standardized capacity values as C' = (C n)/o
in a discrete time sequence of capacity values we can relate C (%)
to C(i — 1) as below.

C()_pc Z_:l‘i_\/l_chr

where U (i) is an independent normal variable such that U (i) ~
N(0,1). Note that although (31) has the form of an AR(1)
model for the capacity sequence, this analysis does not assume
this structure for the entire process. Equation (31) is simply a
representation of the bivariate Gaussian relationship which any
two successive terms in a Gaussian process satisfy. Hence, the
analysis is valid for any Gaussian process. Now, an upcross-
ing across a level defined by C' = Cy is defined by the pair of

(1)
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events: C(i — 1) < Cp and C(i) > Cr. In terms of standard-
ized values, an upcrossing is also equivalent to the pair of events:
C(i—1) < Cp and C(i) > Cp where Cp = (Cp — p)/o.
Hence we have

LCR(Cr) = P{C(i — 1) < Cr,C(i) > Cr}
= P{é(i ~1) < Gy, UG) > C_TLM}

V1-p?
Cr Cr - PeT
B [-oc f(x)(l N F( 71 — p? ))dw
Cr v
= F(Cr) - f(z)F(CTl—j§>dx, (32)

where f(x) and F(z) are the density and distribution function
respectively of the standard Gaussian distribution. This is the
desired result.

APPENDIX B

Another approach to the level crossing problem is to use
Rice’s Formula for the continuous time case. By using standard
results from stochastic process theory, it can be shown that, if
C(t) is a (standardized) continuous time Gaussian process with
ACEF p.(7), then the upcrossing rate across the level Cr is given
by [18], [30]

(33)

Some further calculations show that —5.(0) = Var(dC(t)/dt),
hence relating the constants to variances of the process rather
than the ACF. For the general case, we do not have any analytic
results for p.(7) or Var(dC(t)/dt) but the form of this result
can be easily checked by evaluating 5.(0) from the data, or by a
simple scaling of the exp(—(fT2 /2) curve. However, for MISO
and SIMO systems and for high SNR, following a similar ap-
proach developed in Section III-C, we are able to evaluate j.(0)
as

. dpz
pe(0) = 2F2.

dpr

2:F1(1,55n+1;1)
ny’'(n)

For example, if pn(7) = Jo(27fp7T) we obtain p,(0) =
—27? f2 and the LCR becomes:
P 5 .

2Fi(1,1in +1;1)
fo ;
ny'(n)

Note also that as for the discrete-time case (32), in the
continuous-time case (33) the ACF of the capacity does not play
any role, except for values around zero (the second derivative is
related to Var(dC(t)/dt)).

pn(0) = pr(0).  (34)

(35)

APPENDIX C

In order to evaluate the term E [log, X (¢) log, X (i — k)], we
need the joint probability density function (p.d.f.) of the two
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correlated chi-square r.v.’s X (i) and X (i — k). In order to derive
this joint p.d.f., we note that

= " hi(i)* + hP (), (36)
=1

is a sum of zero mean squared Gaussian r.v.’s each with variance
172. Also, the underlying Gaussian channels are temporally cor-
related with ACF

= E[r{ ())h{ (i~k)] = E[h7 ()h (i—k)], VI=1-n,

(37
and normalized ACF pj, (k). Hence, from [31, eq. 3.14], we can
write the joint p.d.f. of the two correlated central chi-square

r.v’s X (i) and X (i — k) with 2 x n degrees of freedom as:

Ry (k)

(zy) "5 & Tonle

f 1), X (i— z,y) =
XoxGn 8 = G R E )
2|pn(k)|v/Ty )
I, z>0,4y>0,38
' ( 1 pn(k)> Y o9
where ['(-) is the gamma function and I,,(-) is the n-th order

modified bessel function of the first kind [28, eq. 8.406]. Now,
by means of (38) the ACF Rz(k) can be expressed as

E [1082 10g2 ( k)]

n(y) fx @y x(i—k) (2, y) dzdy

(39
(l_ph( ) )]ph( )|n"1F(n)
/0 ln(y)yn—;l eAT:F;}jWE Gy, pn(k),n) dy,
where
G(y9 T, n) £ nﬁleéﬁ‘r‘nflyT
[Py (LG 2n+ Lr%y/(1=r?)) - (40)

+(1 = rH(In(1 — r?) + P(n))] .

Fortunately, after some calculation, the integral (40) can be
evaluated in closed form to give:

Reth) = 28 sy (11,112,004 120) + w2, @)

where 35 (-;-;-) is the generalized hypergeometric function
[28, eq. 9.14]. This is the desired result.
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