• Title/Summary/Keyword: lap shear strength

Search Result 146, Processing Time 0.029 seconds

Variation of fracture strength of adhesive joint according to the operating temperature (사용환경온도에 따른 접착이음의 인장전단강도 변화)

  • Kim, J.Y.;Lee, C.J.;Lee, S.K.;Park, G.W.;Jung, B.H.;Schafer, H.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.517-520
    • /
    • 2008
  • Recently, use of adhesive bonding technology is increased to achieve the multi-material design for lightweight structure in automobile industry. In this paper, the fracture strength of adhesive has been studied with the single lap shear test conducted at different temperatures. The joint specimens are made from Al 5052 and SPRC 440 bonded with structural epoxy adhesive. The operating temperature has been considered up to $150[^{\circ}C]$ and the single lap shear test has been conducted with 5mm/min tensile rate. Fracture strength of adhesive bonded joint has been decreased with increase of operating temperature. The fracture strength at the $100[^{\circ}C]$ was shown about half of that at room temperature.

  • PDF

Stress Distribution and Strength Evaluation of Adhesive Bonded Single-lap Joints (단일겹침 접착제 접합부의 응력분포와 강도평가)

  • 이중삼;임재규;김연직
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.342-347
    • /
    • 2001
  • Recently, adhesive-bonding technique is wifely used in manufacturing structures. Stress and strain analysis of joints are essential to design adhesive-bonded joints structure. The single-lap adhesive joint is the design dominating the range of adhesive joints. In this study, single-lap specimens with different joint dimensions were used for the tensile-shear test and finite element calculation in of order to investigate the effect of overlap length and adhesive-bonding thickness on adhesive strength and stress distribution of the joints. Consequently, it was found that overlap lap size and thickness can be important parameters of structure joints using adhesive bonding, which is effected on adhesive strength.

  • PDF

Evaluation of Welding Characteristics on 3-lap Spot Joint of Zinc Coned Seel Sheet md High Seength Steel Sheet (아연도금 강판과 고장력 강판 3겹 점용접물의 용접특성 평가)

  • Kwon Il-Hyun;Kim Hoi-Hyun;Baek Seung-Se;Yang Seong-Mo;Yu Hyo-Sun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.42-49
    • /
    • 2005
  • In general, multi-lap spot weld joints are frequently present in automobile. Most research, however, has been focused on the single-lap spot weld joints until now. In this paper, tensile-shear strength tests are performed to examine the weldability of 3-lap spot joint welded by using the high strength steel sheet and the zinc coated steel sheet. The indentation depth and nugget diameter are used to propose the optimum welding conditions. The weldability is affected by the welding current and welding time for 3-lap spot joint. Meanwhile the expulsions is round to decrease with the increase of electrode force. The optimum welding conditions are presented for 3-lap spot joints of high strength steel sheet and zinc coated steel sheet.

A study on adhesion properties between composite material and aluminum according to the physical surface treatment technique (물리적 표면처리 기법에 따른 복합소재 및 알루미늄간 접합특성 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.334-339
    • /
    • 2020
  • In this study, the adhesion properties between aluminum and composite materials, composite materials, and composite materials were compared according to the physical surface treatment to improve mechanical bonding at the bonding surface when considering carbon fiber and glass fiber-reinforced composite materials. Bonded specimens were classified into the type of base material and the surface treatment method of the bonding surface. Sandpaper, sandblasting, and plasma were applied as physical surface treatment methods. The bonded specimen was prepared as a single lap joint test specimen. An experiment to measure the lap shear strength was conducted, and the results were compared. The experimental results confirmed that the mechanical abrasion and sandblasting treatment improved the lap shear strength approximately 4 to 5 fold compared to the general specimen without physical surface treatment. In plasma treatment, the experiment was conducted by defining the respective plasma output and treatment time as follows: 150 W and 5 minutes, 150 W and 10 minutes, and 300 W and 3 minutes. Moreover, the lap shear strength results were similar to the previous mechanical surface treatments. On the other hand, the effect on the adhesion properties was small, depending on the plasma treatment conditions.

Effect of Resistance Spot Welding Parameters on AA1100 Aluminum Alloy and SGACD Zinc coated Lap Joint Properties

  • Chantasri, Sakchai;Poonnayom, Pramote;Kaewwichit, Jesada;Roybang, Waraporn;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.153-160
    • /
    • 2015
  • This article is aimed to study the effects of resistance spot welding (RSW) on the lap joint properties between AA1100 aluminum alloy and SGACD zinc coated steel and its properties. The summarized experimental results are as follows. The summarized experimental results are as follows. The optimum welding parameters that produced maximum tensile shear strength of 2200 N was a welding current of 95 kA, a holding time of 10 cycles, and a welding pressure of 0.10 MPa. Increasing of welding current, increased the tensile shear strength of the joint and also increased the amount of aluminum dispersion at the joint interface. The lap joint of steel over the aluminum (Type I) showed the higher joint tensile shear strength than a lap joint of aluminum over the steel (Type II). The indentation depth and the ratio of the indentation depth to the plate thickness decreased when the welding current was increased in the type I lap joint and also decreased when the welding current was decreased in the type II lap joint. The interface structure showed the formation of the brittle $FeAl_3$ intermetallic compound that deteriorated the joint strength.

Evaluation of Stress Distribution and Corrosion Fatigue Strength on Spot Welded Lap Joint of Coated Thin Steel Plate (표면처리 박강판 spot용접 이음재의 응력분포와 부식피로강도 평가)

  • 배동호;임동진
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.36-45
    • /
    • 1996
  • Fatigue strength of the spot welded lap joint is considerably influenced by corrosive environments. Particularly, the chloride and the sulfide are most injurious to strength of the spot welded lap joint. Therefore, there is a need to evaluate its effect to corrosion fatigue strength for safe life design of spot welded structures. In order to evaluate their corrosion fatigue strength, corrosion fatigue tests on the spot welded lap joints of the uncoated and the coated high strength steel sheets were conducted in air and in 10% NaCl solution. Corrosion fatigue strength of the uncoated specimens were entirely lower than the coated one in NaCl solution, but those of the coated specimens in NaCl solution were lower than in air. And stress distribution in single spon welded lap joint subjected to tension-shear load was investigated by the finite element method. Using these results, we tried to evaluate corrosion fatgue strength of the various spot welded lap joints with maximum stress $\sigma_{max}$ at edge on loading side of the spot welded lap joint. We could find that corrosion fatigue strength could be quantitatively and systematically rearranged by $\sigma_{max}$.

  • PDF

Friction Stir Spot Welding of AA5052 Aluminum Alloy and C11000 Copper Lap Joint

  • Prasomthong, Suriya;Sangsiri, Pradit;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.145-152
    • /
    • 2015
  • The article aims to apply a friction stir spot welding for producing the lap joint between AA5052 aluminum alloy and C11000 copper alloy. The dimension of the materials was 100 mm in length, 30 mm in width and 1.0 mm in thickness. The copper plate was set overlap the aluminum plate by 30 mm. The welding parameter was the rotating speed of 2500-4000 rpm, the pin inserting rate of 2-8 mm/min and the holding time of 6 sec. The mechanical properties test and the microstructure investigation were performed to evaluate the lap joint quality. The summarized results are as follows. The friction stir spot welding could produce effectively the lap joint between AA5052 and C11000 copper. Increase of the rotating speed and holding time directly affected to decrease the tensile shear strength of the lap joint. The optimized welding parameters in this study that indicated the tensile shear strength of 864 N was the rotating speed of 3500 rpm, the pin inserting rate of 6 mm/min and the holding time of 4sec. The experimental results also showed that the hardness of the weld metal was lower than that of the base materials.

Seismic-performance Experiments of Circular Shear Piers Considering Effects of Rebar Corrosion, Lap splice and Axial Load (철근부식, 겹침이음 및 축하중의 영향을 고려한 원형 전단 교각의 내진성능실험)

  • Lee, Soo-Hyung;Lee, Seung-Geon;Lee, Hyerin;Hong, Kee-Jeung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.143-153
    • /
    • 2021
  • The corroded pier that has corrosion of the tranverse steel, main steel and lapsplice directly affects the seismic performance. The corrosion of the tranvese and main steel directly reduce the shear strength and bendig strength. If steel corrosion occurs in lap splice, the flexural strength and flexibility of existing corroded pier that are not seismic design are significantly reduced. In addition, as the axial force acting on the pier increase the shear strength. Considering these effects. In this stuydy, we cosidered steel corrosion, lap splice and axial force, for a reasonable evaluation of seismic-performance. It is confirmed that flexular failure occurs at pies where shear failure is expected to occur due to corrosion of reinforcement. These failure modes and their reason are analyzed, and necessary considerations are presented for seismic reinforcement.

A Study on the Curing Method to Improve Bonding Strength of Aluminum/CFRP Composites (알루미늄/CFRP 복합재의 접착강도 향상을 위한 경화방법에 관한 연구)

  • 이경엽;양준호;최낙삼
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.130-135
    • /
    • 2002
  • This study investigates the effect of curing method on the bonding strength of aluminum/CFRP composites. The surface of aluminum panel was treated by DC plasma. Lap shear tests and T-peel tests were performed based on the procedure of ASTM 906-94a and ASTMD1876-95, respectively. Test samples were fabricated by using the co-curing method and the secondary curing method. The results showed that the shear strength of test samples made by the co-curing method was 2.5 times greater than that of test samples made by the secondary curing method. The T-peel strength of the co-curing method case was almost 2 times greater than that of the secondary curing method case.

Lap joint Laser Welding of Hot Stamped Ultra High Strength Steel for Automotive Application (자동차용 핫스탬핑 고강도강 판재의 겹치기 레이저용접)

  • Kim, Yong;Park, Ki-Young;Lee, Kyoung-Don
    • Laser Solutions
    • /
    • v.15 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • Recently ultra high strength steels(UHSS) has been widely applied to the structural or safety components in the automotive industry. Specially, hot stamping boron steel 22MnB5 has shown the crash-resistant characteristics when applying to bumpers and pillars. Lap joint Laser welding of the hot stamped and die quenched sheets of Boron steel was carried out using 3kW Nd/YAG laser. The appropriate Lap joint laser welding conditions were founded separately for four lap joint combinations. The lower sheest is a hot stamped sheet in common and the upper sheet is selected among the hot stamped steel and high strength steels such as SPCC, 370MPa, and 590MPa grade high strength steels. Cross bead sections and local hardening and softening were observed as well as tensile-shear test results.

  • PDF