• Title/Summary/Keyword: lap joints

Search Result 200, Processing Time 0.024 seconds

A Study on the Evaluation of Fatigue Strength of Welded Lap Joint with Element Stress Approach (요소 응력을 이용한 겹침 용접부의 피로 강도 평가에 관한 연구)

  • Kim, Hyeon-Su;Shin, Sang-Beom;Kim, Myung-Hyun;Park, Dong-Hwan
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.61-65
    • /
    • 2014
  • The purpose of this study is to evaluate the applicability of the element stress to establish S-N design curve for the welded lap joint with thin plates below 2mm thickness. In order to do it, the extensive fatigue tests of the welded lap joints with INVAR alloy were performed. With the results, the deign S-N curves for the lap-weld were established by using the reference stresses such as the nominal stress range at the weld throat area, hot spot stress range and element stress range, and compared with regard to the standard deviation. The standard deviation of S-N curves with element stress range was less than that of S-N curves with other reference stresses. In addition, FEA results show the amount of the element stress is less sensitive to mesh size. Based on the results, it can be concluded that the element stress is to be used as the reference stress for the design S-N curves of the welded lap joint.

Establishment for Failure Criterion of Adhesively Bonded Joint (접착이음의 파괴 기준 설정을 위한 연구)

  • 이강용;공병석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.183-190
    • /
    • 2000
  • The objective of this work is to develop a criterion for predicting the failure strength of the joints bonded by ductile adhesives. To obtain a criterion, first, fracture tests were carried out for T-peel joint and Single-lap joint with widely differing joints geometries. Then using the fracture loads obtained at tests, the finite element analysis were performed, in which the stresses in the adhesive bonds were calculated in great detail. After examining four epoxy adhesives, it is concluded that the fracture of adhesively bonded joint occurs when the maximum of the ratio of the mean to effective stresses exceeds a constant value which can be determined from analysis and test for each adhesive.

  • PDF

Effect of $CO_2$ Welding Conditions on Property of Strength in Welded Joint of SPC Steel (SPC 용접부의 강도특성에 미치는 $CO_2$ 용접조건의 영향)

  • Song Jun-Hee;Choi Jun-Yong;Lim Jae-Kyoo
    • Journal of Welding and Joining
    • /
    • v.24 no.3
    • /
    • pp.22-26
    • /
    • 2006
  • It is necessary to investigate the welding performance and fracture resistance of welding part in structure. This study presented a most suitable condition of welding process for butt and lap joints by $CO_2$ arc welding which is widely used in the vehicle structure. Also it was conducted to tensile and fatigue test under various welding conditions. For butt and lap joints, the best conditions of welding voltage and current were 30V and 320A, respectively, in 3.2 and 4.5 mm thick steel plate. Under this condition it could be taken the highest tensile strength and fatigue strength, and a good bead appearance.

Effect of Spew fillet on Failure Strength Evaluation in Adhesive Bonded Joints involving Natural Fiber Reinforced Composites (접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 접착제 필릿의 영향)

  • Kim, Yeon-Jik;Yun, Ho-Cheol;Im, Jae-Gyu
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.262-264
    • /
    • 2005
  • This paper is concerned with a fracture strength study of composite adhesive lap joints. The tests were carried out on specimen joints manufactured hybrid stacked joints such as the polyester and bamboo natural fiber layer. The main objective of the work was to test the fracture strength using hybrid fiber composites with a polyester and bamboo natural fiber layer adjacent to the spew fillet of adhesive bonded joints and hybrid stacked joints. The results are presented using tensile-shear strength graph and finite element analysis. The failure mechanisms are discussed in order to explain that spew fillet at the end of the overlap reduces greatly the adhesive shear and effects the tensile-shear strength in hybrid stacked joints.

  • PDF

Strength of Composit Single-lap Bonded Joints with Different Saltwater Moisture Contents (서로 다른 수분율을 갖도록 염수환경에 노출된 복합재 접착체결부의 강도)

  • Yang, Hyeon-Jeong;Jeong, Mun-Gyu;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.48-54
    • /
    • 2011
  • The effect of moisture contents by salt water on the strength of composite single-lap bonded joints is investigated. The specimens were manufactured in an autoclave by secondary bonding and immersed in the 3.5% salt water of $71^{\circ}C$ for different durations to get various moisture contents; 0, 0.2, 0.5, 1.0, and 2.0%(saturation). A total of 80 joint specimens were tested for 5 different moisture contents and 2 temperature environments. Test results show that while the joint strengths after the saturation of moisture decrease compared to those of dry ones, the strengths of the pre-saturated joint up to 1.0% of moisture content increase in both room and elevated temperature conditions. It is also shown that the strengths of joints tested in elevated temperature are slightly higher than the strength in room temperature by 2-5% until the moisture content reaches 1 %. In contrast, the high temperature strength of the saturated joint is about 5% lower than the room temperature strength.

A Study on the Spot Welding and Fatigue Design of High Strength Steel Sheets for Light Weight Vehicle Body (경량 차체용 고장력 강판의 Spot 용접과 피로설계에 관한 연구)

  • Heo, Jeong-Beom;Bae, Dong-Ho;Yoon, Chi-Sang;Kwon, Soon-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1115-1120
    • /
    • 2003
  • The recent tendency in the automobile industries is toward light weighting vehicle body to improve the problems by environmental pollution as well as improving fuel cost. The effective way to reduce the weight of vehicle body seems to be application of new materials for body structure and such trend is remarkable. Among the various materials for vehicle body, stainless steel sheet (for example, 301L and 304L), TRIP steel and cold rolled steel sheets are under the interests. However, in order to guarantee reliability of new material and to establish the long life design criteria of body structure, it is important and require condition to assess spot weldability of them and fatigue strength of spot welded lap joints which were fabricated under optimized spot welding condition. And, recently, a new issue in the design of the spot welded structure is to predict economically fatigue design criterion without additional fatigue tests. In general, for fatigue design of the spot-welded thin sheet structure, additional fatigue tests according to the welding condition, material, joint type, and fatigue loading condition are generally required. This indicates that much cost and time for it should be consumed. Therefore, in this paper, the maximum stresses at nugget edge of spot weld were calculated through nonlinear finite element analysis first. And next, obtained the ${\Delta}P-N_{f}$ relation through the actual fatigue tests on spot welded lap joints of similar and dissimilar high strength steel sheets. And then, the ${\Delta}P-N_{f}$ relation was rearranged in the ${\Delta}{\sigma}-N_{f}$ relation. From this ${\Delta}{\sigma}-N_{f}$ relation, developed the fatigue design technology for spot welded lap joints of them welded using the optimized welding conditions.

  • PDF

Strength of Stainless Steel Pin-reinforced Composite Single-lap Joints (금속 핀으로 보강된 복합재 단일겹침 체결부의 강도 연구)

  • Lee, Byeong-Hee;Park, Yong-Bin;Kweon, Jin-Hwe;Choi, Jin-Ho;Choi, Ik-Hyeon;Chang, Sung-Tae
    • Composites Research
    • /
    • v.25 no.3
    • /
    • pp.65-69
    • /
    • 2012
  • The main objective of this study is to investigate the effect of metal z-pinning on the failure behavior of cocured composite single-lap joints. Three different pin diameters (0.3, 0.5, and 0.7 mm) and three pin areal densities (0.5, 2.0, and 4.0%) were examined. The specimens were fabricated by T700-12K-31E#2510 unidirectional prepreg from Toray. Stainless steel pins were used for z-pinning. Test results showed that except one case with extremely low pin density of 0.5%, all other z-pinned joints exhibited lower initial crack stresses than those of the unpinned joint. However the ultimate strength of the z-pinned joint increased up to 45% at most. Furthermore, even after the complete failure of the joint, the z-pins sustained the carried load to a certain degree experiencing large deformation and provided the stable fracture behavior for the composite joint.

Development of Simplified Finite Element Models for Welded Joints (용접 결합부에 대한 단순화 유한요소 모델 개발)

  • Song, Seong-Il;Ahn, Sung Wook;Kim, Young Geul;Kim, Hyun-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1191-1198
    • /
    • 2015
  • In this paper, we develop simplified finite element (FE) models for butt-, lap- and T-welded joints by performing numerical and experimental experiments. Three-point bending tests of butt- and lap-welded specimens are performed to obtain the stiffness of the specimens and the strains at points near the welding beads. Similarly the stiffness and strains of T-welded specimen are measured by applying a point load at the end of the specimen. To develop simplified FE models, we consider the shape parameters of width, thickness and the angle of weld elements in the numerical simulations. The shape parameters of the simplified FE models are determined by building linear regression models for the experimental data sets.

Nonlinear Iterative Solution for Adhesively Bonded Tubular Single Lap Joints with Nonlinear Shear Properties (튜브형 단면겹치기 접착조인트의 비선형 반복연산해에 관한 연구)

  • 이수정;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1651-1656
    • /
    • 1995
  • The adhesively bonded tubular single lap joint shows large nonlinear behavior in the loaddisplacement relation, because structural adhesives for the joint are usually rubber toughened, which endows adhesives with nonlinear shear properties. since the majority of load transfer of the adhesively bonded tubular single lap joint is accomplished by the nonlinear behavior of the adhesive, its torque transmission capability should be calculated incorporating nonlinear shear properties. However, both the analytic and numerical analyses become complicated if the nonlinear shear properties of the adhesive are included during the calculation of torque transmission capabilities. In this paper, in order to obtain the torque transmission capabilities easily, an iterative solution which includes the nonlinear shear properties of the adhesive was derived using the analytic solution with the linear shear properties of the adhesive. Since the iterative solution can be obtained very fast due to its simplicity, it has been found that it can be used in the design of the adhesively bonded tubular single lap joint.