• Title/Summary/Keyword: lap joints

Search Result 200, Processing Time 0.025 seconds

Effect of Surface Treatment on Adhesive Strength Properties of Al/PC Adhesive Joints (Al/PC 접합재의 접착강도특성에 미치는 표면처리의 영향)

  • Seo, Do-Won;Yoon, Ho-Cheol;Yoo, Sung-Chol;Lim, Jae-Kyoo;Lutz Dorn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.840-847
    • /
    • 2003
  • The bonding of adhesive joints of adhesive joints is influenced by the surface roughness of the joining Parts. However, the magnitude of the influence has not yet been clarified because of the complexity of the phenomena. In this study, it is shown that surface treatment affects adhesive strength and durability of alumina/polycarbonate single-lap .joints, and leading speed affects tensile-shea strength of adhesive Joints. To evaluate effect of surface treatments on the adhesive strength, several surface treatment methods are used, that is, cleaning, grinding, SiC polishing and sand blasting. It is shown that an optimum value of the surface roughness exists with respect to the tensile-shea strength of adhesive joints. The adhesive strength shows linear relationship with the surface roughness and loading speed. And the mechanical removal of disturbing films of lubricants, impurities and oxides make adhesive strength increase significantly.

Testing and Numerical Analysis on the Fracture Characteristics of Composite Adhesive Bonded Single-Lap Joints (복합재료 Single-Lap 본딩 조인트의 파괴 특성에 대한 실험 및 수치해석 연구)

  • 김광수;박재성;장영순;이영무
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.45-53
    • /
    • 2003
  • The experimental and numerical investigations on the failure characteristics of the secondary bonded composite single-lap joints were performed. The initiations and growths of cracks were observed using CCD camera and acoustic emission sensor during the tension tests of the joint specimens. The structural behaviors of the specimens were predicted by the geometric nonlinear two-dimensional finite element analysis. The three types of observed initial cracks were included in each finite element models and the strain energy release rates of each specimen models were calculated by VCCT(Virtual Crack Closure Technique) technique. The tension tests showed that the initial cracks occurred in the 60∼90% of final failure loads and the major failure modes of the specimens were adhesive failure and the delamination between the 1st and 2nd ply of laminate. The specimens with the thicker bondline had earlier crack initiation loads but higher crack propagation resistance and eventually better loading capability. The delaminations were mostly observed in the thicker bondline specimens. The mode I values of calculated strain energy release rates were higher than the mode II values in the all specimen models considering the three types of initial cracks. The mode I and total strain energy release rates were calculated as higher values in the order of initial crack in the edge interface, comer interface and delamination between the plies of laminate.

The Porosity Control Technology of Lap Joint Welding Using Continuous Wave Nd:YAG Laser of the Low Carbon Steel SS41 (저탄소강 SS41 연속파형 Nd:YAG 레이저 겹치기 용접의 기공제어 기술)

  • Lee, Ka Ram;Hwang, Chan Youn;Yang, Yun Seok;Park, Eun Kyeong;Yoo, Young Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.665-672
    • /
    • 2013
  • With the development of advanced processing technology, laser processing systems, which require high-quality precision processing, have attracted considerable attention. Although laser equipment is expensive, it enables quick processing and less deformation of materials. This technology is often applied to secondary batteries, which has thus farinvolved the use of argon tungsten inert gas (TIG) welding. However, the welding characteristics of argon TIG welding are not yet good, and a laser is used for welding to address this problem. In this study, lap-joint welding was conducted, and the desired welding characteristics were obtained when the laser power was 1800W and the laser beam travel speed was 1.8 m/min. Lap-joint welding was conducted on Ni-coated SS41. Two cases were compared. No pores were observed in the Ni-coated SS41 lap-joint welding part, and cracks appeared from the lap-joints. Moreover, the pole rod and tap were welded together in a T-joint form to improve the output of the secondary battery. T-joint laser welding showed better welding characteristics than TIG welding.

Evaluation of Flexural Strength for UHPC Deck Joints with Lap-Spliced Reinforced Steel Bar (UHPC 바닥판 철근겹침이음 연결부의 휨강도 평가)

  • Hwang, Hoon Hee;Yeo, In Soo;Cho, Keun Hee;Park, Sung Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.92-99
    • /
    • 2011
  • Ultra High Performance Concrete(UHPC) is a superior structural material with high strength and durability. Construction of light and slim structures is realized to apply this expectable new materials in practice. This research is a part of the project to develop UHPC precast deck system for hybrid cable stayed bridge. The main object of this study is to investigate behavior of the lap-spliced reinforced connection in UHPC. The major parameter considered in experimental plan was lap-spliced length. The 4-points bending test for 12 specimens were conducted to verify the effect of considered parameters. Test results show that the minimum value of lap spliced length of 300mm which specified in current korea high bridge design code was very conservative for UHPC precast deck system.

Damage of bonded, riveted and hybrid (bonded/riveted) joints, Experimental and numerical study using CZM and XFEM methods

  • Ezzine, M.C.;Amiri, A.;Tarfaoui, M.;Madani, K.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.5
    • /
    • pp.595-613
    • /
    • 2018
  • The objective of our study is to analyze the behavior of bonded, riveted and hybrid (bonded / riveted) steel / steel assemblies by tensile tests and to show the advantage of a hybrid assembly over other processes. the finite element method with the ABAQUS numerical code was used to model the fracture behavior of the different assemblies. Cohesive zone models (CZM) have been adopted to model crack propagation in bonded joints using a bilinear tensile separation law implemented in the ABAQUS finite element code. The riveted assemblies were modeled with the XFEM damage method identified in this ABAQUS numerical code. Both CZM and XFEM methods are combined to model hybrid assemblies. The results are consistent with the experimental results and make it possible to guarantee the validity of the applied numerical model. The use of a hybrid assembly shows a high resistance compared to other conventional methods, where the number of rivets has been highlighted. The use of the hybrid assembly improves mechanical strength and increases service life compared to a single lap joint and a riveted joint.

Joint Characteristics of Spot Friction Stir Welded A 5052 Alloy Sheet (마찰교반 점용접한 A 5052 알루미늄 합금판재의 접합부 특성)

  • Yeon, Yun-Mo;Lee, Won-Bae;Lee, Chang-Yong;Jung, Seung-Boo;Song, Keun
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.71-76
    • /
    • 2006
  • In this study, the microstructure and mechanical properties of spot friction stir welded A 5052 alloy were investigated. Especially, the effect of insertion depth of welding tool on microstructural changes and mechanical properties was investigated in order to obtain the optimum spot friction stir welding condition. The lap shear load of spot friction stir welded A 5052 alloy plates showed lower value at the shallowest insertion depth and increased with tool insertion depth. At 1.6mm, the maximum value of 3.35 kN was obtained, and then dropped to lower load when the insertion depth was deeper. Spot friction stir welded joints showed shear fracture mode at shallower insertion depths and fracture mode changed to plug fracture mode as the insertion depth was deeper.

Effect of Corona Treatment of Polymers on Bonds to Aluminum (高分子 物質의 表面에너지 增加에 對한 새로운 理論. 高分子 物質의 코로나 放電處理가 알루미늄과의 接着强度에 주는 影響)

  • Kim Chung Yup;Sung Ki Joong
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.417-423
    • /
    • 1976
  • Corona treatment of PE, PP and PVC showed a dramatic increase of bond strength when lap joints were made between the polymers and aluminum plates. Heating the corona-treated PE and PP, and PVC in a drying oven at 80 and $50^{\circ}C$, respectively, for 15 min reduced the bond strength to about a half of that of corona-treated but unheated polymers, which indicated that the increase of bond strength was not due to oxidation of the polymer surface. The Weibull distribution function was employed to check reliability of the scattered data obtained from testing the lap joints. It is speculated that electron was deposited on the corona-treated polymer surface to enhance bond strength with aluminum.

  • PDF

Shear Strength of an Aluminum Alloy Bonded with a DP-460 Adhesive: Single Lap-shear Joints

  • Kim, Hyun-Bum;Nishida, Tomohisa;Oguma, Hiroyuki;Naito, Kimiyoshi
    • Journal of Adhesion and Interface
    • /
    • v.21 no.1
    • /
    • pp.20-26
    • /
    • 2020
  • Single lap-shear joints (SLJ) specimens with and without partial round fillets were fabricated to measure the average shear strength of adhesives. The effects of the length of the adherend on the SLJ specimens were also investigated. An epoxy adhesive was used to bond aluminum alloy. Tensile tests were performed on the adhesive bulk specimens to measure the mechanical properties. The finite element analysis (FEA) method was used to measure the adhesive stress distributions, i.e., the peel and shear stresses, on the bonded part. The experimental results revealed that the specimen consisting short length of adherend and without the partial round fillets exhibited the smallest average shear strength of adhesive among the investigated specimens. FEA revealed that the low average shear strength for the specimen with a short adherend length was caused by high stress concentrations on the adhesive at the edge of the bonded part.

A Study on Stress Concentration Factor of Composite Laminate Mechanical Joints (복합재료 적층판 기계적 체결부 응력집중계수에 대한 고찰)

  • Kwon, Jeong-Sik;Kim, Jin-Sung;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.194-200
    • /
    • 2013
  • In this paper, the results of composite laminate mechanical joints test(ASTM D5961) are compared with the theoretical strength calculations and FEM analysis results. To calculate the S.C.F.(stress concentration factor) on joint strength, equations on metallic and composite materials in ASM Handbook used and compared with experimental results. The difference of joint strength are compared by geometrical parameters and joining types(single/double lap joint). In FEM analysis, to find efficient FEM model on composite laminate mechanical joint, several FEM models are compared with experimental test results.

Numerical analysis of the combined aging and fillet effect of the adhesive on the mechanical behavior of a single lap joint of type Aluminum/Aluminum

  • Medjdoub, S.M.;Madani, K.;Rezgani, L.;Mallarino, S.;Touzain, S.;Campilho, R.D.S.G.
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.693-707
    • /
    • 2022
  • Bonded joints have proven their performance against conventional joining processes such as welding, riveting and bolting. The single-lap joint is the most widely used to characterize adhesive joints in tensile-shear loadings. However, the high stress concentrations in the adhesive joint due to the non-linearity of the applied loads generate a bending moment in the joint, resulting in high stresses at the adhesive edges. Geometric optimization of the bonded joint to reduce this high stress concentration prompted various researchers to perform geometric modifications of the adhesive and adherends at their free edges. Modifying both edges of the adhesive (spew) and the adherends (bevel) has proven to be an effective solution to reduce stresses at both edges and improve stress transfer at the inner part of the adhesive layer. The majority of research aimed at improving the geometry of the plate and adhesive edges has not considered the effect of temperature and water absorption in evaluating the strength of the joint. The objective of this work is to analyze, by the finite element method, the stress distribution in an adhesive joint between two 2024-T3 aluminum plates. The effects of the adhesive fillet and adherend bevel on the bonded joint stresses were taken into account. On the other hand, degradation of the mechanical properties of the adhesive following its exposure to moisture and temperature was found. The results clearly showed that the modification of the edges of the adhesive and of the bonding agent have an important role in the durability of the bond. Although the modification of the adhesive and bonding edges significantly improves the joint strength, the simultaneous exposure of the joint to temperature and moisture generates high stress concentrations in the adhesive joint that, in most cases, can easily reach the failure point of the material even at low applied stresses.