• Title/Summary/Keyword: langmuir model

Search Result 530, Processing Time 0.031 seconds

Characteristics of Equilibrium, Kinetic and Thermodynamic for Adsorption of Acid Blue 40 by Activated Carbon (활성탄에 의한 Acid Blue 40 흡착에 있어서 평형, 동력학 및 열역학적 특성)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.592-599
    • /
    • 2018
  • The kinetics and thermodynamics of the adsorption of acid blue 40 from an aqueous solution by activated carbon were examined as a function of the activated carbon dose, pH, temperature, contact time, and initial concentration. The adsorption efficiency in a bathtub was increased at pH 3 and pH 11 due to the presence of sufonate ions ($SO_3{^-}$) and amine ions ($NH_2{^+}$). The equilibrium adsorption data were fitted to the Langmuir, Freundlich and Temkin isotherms. The results indicated that the Langmuir model provides the best correlation of the experimental data. The separation factor of the Langmuir and Freundlich model showed that the adsorption treatment of acid blue 40 by activated carbon could be an effective adsorption process. The adsorption energy determined by the Temkin equation showed that the adsorption step is a physical adsorption process. Kinetics analysis of the adsorption process of acid blue 40 on activated carbon showed that a pseudo second order kinetic model is more consistent than a pseudo second order kinetic model. The estimated activation energy was 42.308 kJ/mol. The enthalpy change (80.088 J/mol) indicated an endothermic process. The free energy change (-0.0553 ~ -5.5855 kJ/mol) showed that the spontaneity of the process increased with increasing adsorption temperature.

Adsorption Characteristic of Hydrogen and Methane on Activated Carbon (활성탄에 대한 수소화 메탄의 흡착특성)

  • Jin, Yinzhe;Choi, Dae-Ki;Row, Kyung-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.307-314
    • /
    • 2005
  • In this work, a static volumetric method was experimentally implemented to measure the adsorption isotherm of hydrogen and methane by the activated carbon. The equilibrium data of stationary phase and mobile phase were correlated into the Langmuir, Freundlich, Langmuir-Freundlich, and Toth isotherms, respectively. In addition, the comparison between prediction and experimental data was made. By a nonlinear regression analysis, the experimental parameters in the equilibrium isotherms were estimated and compared. Then, the linear and quadratic equations for pressure and temperature to adsorption amounts were expressed. The adsorption amounts were increased with the pressure increase and the temperature decrease.

Dielectric Relaxation Time of Long Chain Fatty Acid Langmuir films (장쇄지방산 L막의 완화 시간)

  • Cho, Dong-Kyu;Chang, Hun;Oh, Jae-Han;Gang, Yong-Chul;Choi, Young-Il;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.279-282
    • /
    • 2000
  • The displacement current measurement has been employed to study the dielectric properties of Langmuir films. A method for determining the dielectric relaxation time $\tau$ of floating monolayers on water surface is presented. The displacement current flowing across monolayers is analyzed using a rod-like molecular model. It's revealed that the dielectric relaxation time $\tau$ of monolayers in the isotropic polar orientational phase is determined using a liner relationship between the monolayers compression speed $\alpha$ and the molecular maximum area $A_{m}$. The compression speed $\alpha$ was about 30, 40, 50mm/minmm/min

  • PDF

Degradation Behaviors of Poly(l-lactide) using Model Systems (모델 시스템을 이용한 Poly(l-lactide)의 분해거동)

  • Min Seong-Kee;Moon Myong-Jun;Lee Won-Ki
    • Journal of Environmental Science International
    • /
    • v.15 no.2
    • /
    • pp.177-183
    • /
    • 2006
  • The hydrolytic kinetics of biodegradable poly(l-lactide) (PLLA) have been studied by using two model systems, solution-grown single crystal (SC) and Langmuir monolayer techniques, for elucidating the mechanism for both alkaline and enzymatic degradations. The present study investigated the parameters such as degradation medium and time. The Langmuir mono layers of PLLA showed faster rates of hydrolysis when they were exposed to a basic subphase rather than they did when exposed to neutral subphase. Both degradation mediums had moderate concentrations to show a maximized activity, depending on their sizes. An alkaline degradation of SCs of PLLA showed the decrease of molecular weight of the remained crystals due to the erosion of chain-folding surface. However, the enzymatic degradation of SCs of PLLA occurred in the crystal edges thus the molecular weight of remained crystals was not changed. This behavior might be attributed to the size of enzymes which is much larger than that of alkaline ions; that is, the enzymes need larger contact area with monolayers to be activated.

Equilibrium and kinetic studies on the adsorption of copper onto carica papaya leaf powder

  • Varma V., Geetha;Misra, Anil Kumar
    • Membrane and Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.403-416
    • /
    • 2016
  • The possibility of using carica papaya leaf powder for removal of copper from wastewater as a low cost adsorbent was explored. Different parameters that affect the adsorption process like initial concentration of metal ion, time of contact, adsorbent quantity and pH were evaluated and the outcome of the study was tested using adsorption isotherm models. A maximum of 90%-94.1% copper removal was possible from wastewater having low concentration of the metal using papaya leaf powder under optimum conditions by conducting experimental studies. The biosorption of copper ion was influenced by pH and outcome of experimental results indicate the optimum pH as 7.0 for maximum copper removal. Copper distribution between the solid and liquid phases in batch studies was described by isotherms like Langmuir adsorption and Freundlich models. The adsorption process was better represented by the Freundlich isotherm model. The maximum adsorption capacity of copper was measured to be 24.51 mg/g through the Langmuir model. Pseudo-second order rate equation was better suited for the adsorption process. A dynamic mode study was also conducted to analyse the ability of papaya leaf powder to remove copper (II) ions from aqueous solution and the breakthrough curve was described by an S profile. Present study revealed that papaya leaf powder can be used for the removal of copper from the wastewater and low cost water treatment techniques can be developed using this adsorbent.

A comparative study for adsorption of carbolic acid by synthetic resins

  • Uslu, Hasan;Bamufleh, Hisham S.
    • Membrane and Water Treatment
    • /
    • v.6 no.6
    • /
    • pp.439-449
    • /
    • 2015
  • Carbolic Acid which is called phenol is one of the important starting and/or intermediate materials in various industrial processes. However, its excessive release into environment poses a threat to living organisms, as it is a highly carcinogens and hazardous pollutant even at the very low concentration. Thus removal of phenol from polluted environments is very crucial for sustainable remediation process. We developed a low cost adsorption method for separating phenol from a model aqueous solution. The phenol adsorption was studied using two adsorbents i.e., Amber lite XAD-16 and Amber lite XAD-7 HP with a constant amount of resin 0.1 g at varying aqueous phenol concentrations ($50-200mgL^{-1}$) at room temperature. We compared the efficacy of two phenol adsorbents for removing higher phenol concentrations from the media. We investigated equilibrium and kinetics studies of phenol adsorption employing Freundlich, Temkin and Langmuir isotherms. Amberlite XAD-16 performed better than Amberlite XAD-7 HP in terms of phenol removal efficiency that amounted to 95.52%. Pseudo second order model was highly fitted for both of the adsorption systems. The coefficient of determination ($R^2$) with Langmuir isotherm was found to be 0.98 for Amberlite XAD-7 HP. However, Freundlich isotherm showed $R^2$ value of 0.95 for Amberlite XAD-16, indicating that both isotherms could be described for the isotherms on XAD-7 HP and Amberlite XAD-16, respectively.

Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Acenaphthene onto Sylopute (실로퓨트에 의한 아세나프텐 흡착에 관한 등온흡착식, 동역학 및 열역학적 특성)

  • Cho, Da-Nim;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.127-134
    • /
    • 2020
  • The adsorption characteristics of the major tar compound, acenaphthene, derived from Taxus chinensis by the commercial adsorbent Sylopute were investigated using different parameters such as initial acenaphthene concentration, adsorption temperature, and contact time. Out of Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models, adsorption data were best described by Langmuir isotherm. The adsorption kinetics was evaluated by pseudo-first-order, pseudo-second-order and intraparticle diffusion models. The pseudo-second-order model was found to explain the adsorption kinetics most effectively. Thermodynamic parameters revealed the feasibility, nonspontaneity and exothermic nature of adsorption. In addition, the isosteric heat of adsorption was independent of surface loading indicating the Sylopute used as an energetically homogeneous surface.

Cu and Zn Ions Adsorption Properties at Various pH with a Synthetic Zeolite (합성 제올라이트를 이용한 pH에 따른 Cu와 Zn 이온의 흡착특성)

  • Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.805-813
    • /
    • 2012
  • The removal property of Cu and Zn ions by chemical precipitation and adsorption using zeolite(Z-C1) prepared from coal fly ash(CFA) were evaluated in this study. Adsorption kinetic and equilibrium mechanisms described to analyze parameters and correlation factors with Lagergen $1^{st}$ and $2^{nd}$ order model and Langmuir and Freundlich model. Analysis of adsorption kinetics data revealed that the pseudo $2^{nd}$ order kinetics mechanism was predominant. The equilibrium data in pH 3 - 5 were able to be fitted well to a Langmuir model, by which the maximum adsorption capacities($q_{max}$) were determined at 124.9 - 140.1 mg $Cu^{2+}/g$ and 153.2 - 166.9 mg $Zn^{2+}/g$, respectively. We found that Z-C1 has a potential application as absorbents in metal ion recovery with low pH.

Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbents(III) (흡착제의 흡착특성 규명을 위한 흡착모델의 적용성 평가(III) - 열역학적 특성을 중심으로)

  • Na, Choon-Ki;Jeong, Jin-Hwa;Park, Hyun-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.260-269
    • /
    • 2012
  • The aim of this study is to evaluate the applicability of adsorption models for understanding the thermodynamic properties of adsorption process. For this study, the adsorption isotherm data of $NO_3$-N ion onto a commercial anion exchange resin obtained at various experimental conditions, i.e. different initial concentrations of adsorbate, different dosages of adsorbent, and different temperatures, were used in calculating the thermodynamic parameters and the adsorption energy of adsorption process. The Gibbs free energy change (${\Delta}G^0$) of adsorption process could be calculated using the Langmuir constant $b_M$ as well as the Sips constant, even though the results were significantly dependant on the experimental conditions. The thermodynamic parameters such as standard enthalpy change (${\Delta}H^0$), standard entropy change (${\Delta}S^0$) and ${\Delta}G^0$ could be calculated by using the experimental data obtained at different temperatures, if the adsorption data well fitted to the Langmuir isotherm model and the plot of ln b versus 1/T gives a straight line. As an alternative, the empirical equilibrium constant(K) defined as $q_e/C_e$ could be used for evaluating the thermodynamic parameters instead of the Langmuir constant. The results from the applications of D-R model and Temkin model to evaluate the adsorption energy suggest that the D-R model is better than Temkin model for describing the experimental data, and the availability of Temkin model is highly limited by the experimental conditions. Although adsorption energies determined using D-R model show significantly different values depending on the experimental conditions, they were sufficient to show that the adsorption of $NO_3$-N onto anion exchange resin is an endothermic process and an ion-exchange process.

Characteristics of Batch and Continuous Operation in Sr ion Removal from Aqueous Solution Using NaA Zeolite (NaA 형 제올라이트를 이용한 수중의 Sr 이온 제거에서 회분식 및 연속식 운전 특성)

  • Kam, Sang-Kyu;Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.9
    • /
    • pp.505-512
    • /
    • 2017
  • The adsorption characteristics of Sr ion in aqueous solution was examined using zeolite NaA powder (Z-PA) and pellets (Z-BA). In batch experiment, the adsorption of Sr ions by Z-BA and Z-PA was well expressed by pseudo-second-order kinetic model than psedo-first-order kinetic model. Experimental isotherm results was well fitted to Langmuir isotherm model and the maximum adsorption capacities obtained from Langmuir isotherm model were 233.32 mg/g for Z-PA and 164.60 mg/g for Z-BA, respectively. The continuous experiment results showed that the total Sr ion uptake (q) increased, but the breakthrough time, effluent volume ($V_{eff}$) and total removal (R) of Sr ion decreased with the Sr ion concentration. The breakthrough curves obtained from the experiment was modeled by Thomas model.