• Title/Summary/Keyword: langmuir

Search Result 1,558, Processing Time 0.027 seconds

Reaction Kinetics for Steam Reforming of Ethane over Ru Catalyst and Reactor Sizing (루테늄 촉매를 이용한 에탄의 수증기 개질 반응 Kinetics와 반응기 Sizing)

  • Shin, Mi;Seong, Minjun;Jang, Jisu;Lee, Kyungeun;Cho, Jung-Ho;Lee, Young-Chul;Park, Young-Kwon;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.204-209
    • /
    • 2012
  • In this study, kinetics data was obtained for steam reforming reaction of ethane over the commercial ruthenium catalyst. The variables of ethane steam reforming were the reaction temperature, partial pressure of ethane, and steam/ethane mole ratio. Parameters for the power rate law kinetic model and the Langmuir-Hinshelwood model were obtained from the kinetic data. Also, sizing of steam reforming reactor was performed by using PRO/II simulator. The reactor size calculated by the power rate law kinetic model was bigger than that of using the Langmuir-Hinshelwood model for the same conversion of ethane. Reactor size calculated by the Langmuir-Hinshelwood model seems to be more suitable for the reactor design because the Langmuir-Hinshelwood model was more consistent with the experimental results.

High Temperature Vaporization of the High Melting Point Oxides (고융점 산화물에 대한 고온 증발)

  • 이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 1978
  • The vapor pressure of the high melting point oxides, MgO, $Cr_2O_3$, and $MgCr_2O_4$ were measured over the temperature range 1300 to 175$0^{\circ}C$ under vacuum <$10^{-5}$ torr by the Langmuir and the Knudsen method. The Langmuir vapor pressure was increased with elevating temperature and with increasing porosity of the specimen. The difference between the vapor preseures measured by the Langmuir and the Knudsen method was decreased with elevating temperature and the Langmuir vapor pressure finally reached the Knudsen vapor pressure at the melting point when extrapolated. The vapor pressure of other important oxides with high melting points, i.e., $Al_2O_3$, $ThO_2$, $Yb_2O_3$ and $Y_2O_3$ were cited from the references. The Langmuir and the Knudsen vapor pressure of these oxides also showed the same results, i.e., they showed the same value at their melting points.

  • PDF

Oxygen Coverage Measurment on Tungsten Surface by Neclear Microanalysis (Nuclear Microanalysis에 의한 텅스텐 표면의 산소 흡착조사)

  • 김명원;황정남
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.96-99
    • /
    • 1992
  • The microanalysics by the direct observation of 180 (P, a)'" nuclear reactions on tungsten (110) surfaceare investigated using a 2MeV Van de Graaff accelerator. This method allows the determination of very smallquantities of nuclei near the surface of samples. The yields increase with oxygen exposure. The oxygen coverage, 0, is 0.5 at 5 Langmuir and 1.0 at 15 Langmuir.5 Langmuir.

  • PDF

A. Study on the PAAS(Polyamic Acid Alkylamine Salts) Langmuir Films and Langmuir-Blodgett Films using BAM(Brewster angle microscopy) (BAM(Brewster angle microscopy)을 이용한 PAAS(Polyamic Acid Alkylamine Salts)의 Langmuir막과 Langmuir-Blodgett막의 특성 연구)

  • 이승엽;강도열;김태완
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.147-151
    • /
    • 1996
  • Brewster angle microscopy(BAM) makes it possible to observe the monolayer states on the water subphase and the phase transitions from a gaseous phase via a expanded phase to a condensed phase. Also BAM can be used to observe the films on the solid substrate such as Langmuir-Blodgett(LB) films. In this Paper Polyamic Acid Alkylamine Salts(PAAS) was used for forming L films and LB films and $\pi$-A isotherm showed pressure of each phase. We obtained BAM images as surface pressure increased. Images of LB films were compared with data from ellipsometry which was used to measure the film thickness. Images of both L films and LB films were analyzed with computer in the point of brightness.

  • PDF

A Study on VOCS Adsorption at Low Pressure (낮은 분압의 VOCs의 흡착에 관한 연구)

  • Song, Hun-Taek;Kan, Sung-Won;Min, Byong-Hun;Suh, Sung-Sup
    • Clean Technology
    • /
    • v.9 no.4
    • /
    • pp.153-161
    • /
    • 2003
  • This study was carried out as a basic experiment for development of adsorption process in which benzene and toluene was adsorbed on activated carbon. In the static adsorption experiment, Adsorption character of benzene and toluene was studied by change of temperature and pressure. Activated carbon 12~20mesh and activated carbon 20~40mesh was used as adsorbents, Benzene, toluene and nitrogen as adsorbates. Experimental data were obtained to fitted to Langmuir isotherm and dependence was acquired. Parameters of adsorption heat and adsorption constant was obtained. Static adsorption experiment for binary mixtures confirmed that Langmuir isotherm parameters could be applicable to Extended Langmuir isotherm. Experimental technique used in this study only requires pressure measurement and this technique is different from the conventional method which measures gas mole compositions before adsorption and after adsorption. The dynamic adsorption experiment was carried out and the experimental results was compared with the computer simulation results. In this study, basic data was acquired to decide adsorption conditions in the process.

  • PDF

Measurement of Langmuir Adsorption Equilibrium by Elution-curve Method and Frontal Analysis (용출곡선법과 Frontal Analysis를 이용한 Langmuir 흡착평형식의 측정)

  • Choi, Yong Seok;Lee, Chong Ho;Row, Kyung Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.672-676
    • /
    • 1999
  • Adsorption isotherm is the most fundamental information in adsorption separation-process. Directly from the elution profile of a peak, the elution-curve method and frontal analysis(FA) were utilized to measure the adsorption isotherm in this work. Using RP-HPLC, sample and the buffer added in mobile phase were 5'-GMP and sodium phosphate, respectively. In this experimental condition, the retention time was decreased with increase in the injected mass of sample. And the front part of a peak was very stiff, so Langmuir adsorption isotherm might be applied. By the elution-curve method, the parameters used in the isotherm were obtained by optimization method, while by the FA, the concentrations of stationary phase were measured from the elution curve and the isotherm was determined by regression analysis. Compared to FA, the consumption of sample was less, and only one or two injections were needed by the elution-curve method. Finally, the effect of concentration of sodium phosphate in mobile phase on the parameters of the isotherm was investigated.

  • PDF

The Phase-Shift Method for the Langmuir Adsorption Isotherms at the Noble Metal (Au, Rh) Electrode Interfaces (귀금속(Au, Rh) 전극계면에서 Langmuir 흡착등온식에 관한 위상이동방법)

  • Chun, Jang H.;Jeon, Sang K.;Lee, Jae H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.119-129
    • /
    • 2003
  • The Langmuir adsorption isotherms of the over-potentially deposited hydrogen (OPD H) fur the cathodic $H_2$ evolution reaction (HER) at the poly-Au and $Rh|0.5M\;H_2SO_4$ aqueous electrolyte interfaces have been studied using cyclic voltammetric and ac impedance techniques. The behavior of the phase shift $(0^{\circ}{\leq}{-\phi}{\leq}90^{\circ})$ for the optimum intermediate frequency corresponds well to that of the fractional surface coverage $(1{\geq}{\theta}{\geq}0)$ at the interfaces. The phase-shift profile $({-\phi}\;vs.\;E)$ for the optimum intermediate frequency, i.e., the phase-shift method, can be used as a new electrochemical method to determine the Langmuir adsorption isotherm $({\theta}\;vs.\;E)$ of the OPD H for the cathodic HER at the interfaces. At the poly-Au|0.5M $H_2SO_4$ aqueous electrolyte interface, the equilibrium constant (K) and the standard free energy $({\Delta}G_{ads})$ of the OPD H are $2.3\times10^{-6}$ and 32.2kJ/mol, respectively. At the poly-Rh|0.5M $H_2SO_4$ aqueous electrolyte interface, K and ${\Delta}G_{ads}$ of the OPD H are $4.1\times10^4\;or\;1.2\times10^{-2}$ and 19.3 or 11.0kJ/mol depending on E, respectively. In contrast to the poly-Au electrode interface, the two different Langmuir adsorption isotherms of the OPD H are observed at the poly-Rh electrode interface. The two different Langmuir adsorption isotherms of the OPD H correspond to the two different adsorption sites of the OPD H on the poly-Rh electrode surface.

A Study on Reaction Kinetics in Steam Reforming of Natural Gas and Methane over Nickel Catalyst (니켈촉매 상에서 천연가스와 메탄의 수증기 개질 반응에 관한 Kinetics 연구)

  • Seong, Minjun;Lee, Young-Chul;Park, Young-Kwon;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.375-381
    • /
    • 2013
  • Kinetics data were obtained for steam reforming of methane and natural gas over the commercial nickel catalyst. Variables for the steam reforming were the reaction temperature and partial pressure of reactants. Parameters for the Power law rate model and the Langmuir-Hinshelwood model were obtained from the kinetic data. As a result of the reforming reaction using pure methane as a reactant, the reaction rate could be determined by the Power law rate model as well as the Langmuir-Hinshelwood model. In the case of methane in natural gas, however, the Langmuir-Hinshelwood model is much more suitable than the Power law rate model in terms of explaining methane reforming reaction. This behavior can be attributed to the competitive adsorption of methane, ethane, propane and butane in natural gas over the same catalyst sites.