Browse > Article

Reaction Kinetics for Steam Reforming of Ethane over Ru Catalyst and Reactor Sizing  

Shin, Mi (Department of Chemical Engineering, Kongju National University)
Seong, Minjun (Department of Chemical Engineering, Kongju National University)
Jang, Jisu (Department of Chemical Engineering, Kongju National University)
Lee, Kyungeun (Department of Chemical Engineering, Kongju National University)
Cho, Jung-Ho (Department of Chemical Engineering, Kongju National University)
Lee, Young-Chul (Korea Gas Co. R & D Division)
Park, Young-Kwon (School of Environmental Engineering, University of Seoul)
Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
Publication Information
Applied Chemistry for Engineering / v.23, no.2, 2012 , pp. 204-209 More about this Journal
Abstract
In this study, kinetics data was obtained for steam reforming reaction of ethane over the commercial ruthenium catalyst. The variables of ethane steam reforming were the reaction temperature, partial pressure of ethane, and steam/ethane mole ratio. Parameters for the power rate law kinetic model and the Langmuir-Hinshelwood model were obtained from the kinetic data. Also, sizing of steam reforming reactor was performed by using PRO/II simulator. The reactor size calculated by the power rate law kinetic model was bigger than that of using the Langmuir-Hinshelwood model for the same conversion of ethane. Reactor size calculated by the Langmuir-Hinshelwood model seems to be more suitable for the reactor design because the Langmuir-Hinshelwood model was more consistent with the experimental results.
Keywords
steam reforming; reaction kinetics; ethane; Ru catalyst; reactor sizing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. H. Park, K. S. Kim, J. W. Jun, S. Y. Cho, and Y. K. Lee, J. Korean Ind. Eng. Chem., 20, 186 (2009).
2 A. J. Vizcaino, A. Carrero, and J. A. Calles, Int. J. Hydrogen Energy, 32, 1450 (2007).   DOI   ScienceOn
3 T. S. Christensen, Appl. Catal. A Gen., 138, 285 (1996).   DOI   ScienceOn
4 P. O. Graf, B. L. Mojet, J. G. van Ommen, and L. Lefferts, Appl. Catal. A Gen., 332, 310 (2007).   DOI   ScienceOn
5 J. H. Jeong, J. W. Lee, D. J. Seo, Y. Seo, W. L. Yoon, D. K. Lee, and D. H. Kim, Appl. Catal. A Gen., 302, 151(2006).   DOI   ScienceOn
6 L. P. R. Profeti, E. A. Ticianelli, and E. M. Assaf, Fuel, 87, 2076 (2008).   DOI   ScienceOn
7 K. M. Hardiman, T. T. Ying, A. A. Adesina, E. M. Kennedy, and B. Z. Dlugorski, Chem. Eng. J., 102, 119 (2004).   DOI   ScienceOn
8 J. G. Seo, M. H. Youn, J. C. Jung, and I. K. Song, Int. J. Hydrogen Energy, 34, 5409 (2009).   DOI   ScienceOn
9 T. Sperle, D. Chen, R. Lodeng, and A. Holmen, Appl. Catal. A Gen., 282, 195 (2005).   DOI   ScienceOn
10 B. T. Schadel, M. Duisberg, and O. Deutschmann, Catalysis Today, 142, 42 (2009).   DOI   ScienceOn
11 K. Hou and R. Hughes, Chem. Eng. J., 82, 311 (2001).   DOI   ScienceOn
12 S. S. Maluf and E. M. Assaf, Fuel, 88, 1547 (2009).   DOI   ScienceOn
13 M. Leventa, D. J. Gunn, and M. A. El-Bousi, Int. J. Hydrogen Energy, 28, 945 (2003).   DOI   ScienceOn
14 V. R. Choudhary and K. C. Mondal, Appl. Energy, 83, 1024 (2006).   DOI   ScienceOn
15 Z. A. Aboosadi, M. R. Rahimpour, and A. Jahanmiri, Int. J. Hydrogen energy, 36, 2960 (2011).   DOI   ScienceOn
16 M. Zeppieri, P. L. Villa, N. Verdone, M. Scarsella, and P. D. Filippis, Appl. Catal. A Gen., 387, 147 (2010).   DOI   ScienceOn
17 W. H. Lee, Master Dissertation, Kongju National University, Gongju, Korea (2011).
18 Y. Zhan, D. Li, K. Nishida, T. Shishido, Y. Oumi, T. Sano, and K. Takehira, Appl. Catal. A Gen., 356, 231 (2009).   DOI   ScienceOn
19 D. Li, K. Nishida, Y. Zhan, T. Shishido, Y. Oumi, T. Sano, and K. Takehira, Appl. Clay Sci., 43, 49 (2009).   DOI   ScienceOn
20 H. Chon and G. Seo, Introduction of Catalysis, 4th edition, 205, Hanrimwon, Korea (2002).