• Title/Summary/Keyword: lane speeds

Search Result 56, Processing Time 0.024 seconds

Development of Free Flow Speed Estimation Model by Artificial Neural Networks for Freeway Basic Sections (인공신경망을 이용한 고속도로 기본구간 자유속도 추정모형개발)

  • Kang, Jin-Gu;Chang, Myung-Soon;Kim, Jin-Tae;Kim, Eung-Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.109-125
    • /
    • 2004
  • In recent decades, microscopic simulation models have become powerful tools to analyze traffic flow on highways and to assist the investigation of level of service. The existing microscopic simulation models simulate an individual vehicle's speed based on a constant free-flow speed dominantly specified by users and driver's behavior models reflecting vehicle interactions, such as car following and lane changing. They set a single free-flow speed for a single vehicle on a given link and neglect to consider the effects of highway design elements to it in their internal simulation. Due to this, the existing models are limitted to provide with identical simulation results on both curved and tangent sections of highways. This paper presents a model developed to estimate the change of free-flow speeds based on highway design elements. Nine neural network models were trained based on the field data collected from seven different freeway curve sections and three different locations at each section to capture the percent changes of free-flow speeds: 100 m upstream of the point of curve (PC) and the middle of the curve. The model employing seven highway design elements as its input variables was selected as the best : radius of curve, length of curve, superelevation, the number of lanes, grade variations, and the approaching free-flow speed on 100 m upstream of PC. Tests showed that the free-flow speeds estimated by the proposed model were statistically identical to the ones from the field at 95% confidence level at each three different locations described above. The root mean square errors at the starting and the middle of curve section were 6.68 and 10.06, and the R-squares at these points were 0.77 and 0.65, respectively. It was concluded from the study that the proposed model would be one of the potential tools introducing the effects of highway design elements to free-flow speeds in simulation.

Median Arterial Bus Lane Operation Analysis Using the Downs-Thomson Paradox Theory (Downs-Thomson Paradox를 이용한 중앙버스전용차로 운행실태분석)

  • Lee, Seung-Jae;Ryu, Seung-Kyu
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.5 s.83
    • /
    • pp.83-92
    • /
    • 2005
  • The purpose of the paper is to analyze an effectiveness before and after implementation of the median arterial bus lanes operation. The paper includes a speed analysis based on the Downs-Thomson Paradox theory, and a reliability analysis based on variance analysis of arrival time. According to the speed analysis, some road sections are now under phase 2 according to the Downs-Thomson Paradox, which is a state in which the bus speeds are greater than the car speeds. In the future it is predicted that cars and buses will reach an equilibrium speed which is in phase 3 of the multi-modal equilibrium theory. According to the reliability analysis of arrival time at each bus stop, in roads of median arterial bus lanes. the variance of arrival time is generally smaller than after the scheme implemented in eight months later.

A Study of the Relationship between Driver's Anxiety EEG & Driving Speed in Motorway Sections (주행속도와 기하구조에 따른 운전자 불안뇌파 분석 -고속주행시를 중심으로-)

  • Lim, Joon-Bum;Lee, Soo-Beom;Kim, Keun-Hyuk;Kim, Sang-Youp;Choi, Jai-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.167-175
    • /
    • 2012
  • For establishing a standard of design element of the smart highway, this study investigated driver's anxiety EEG according to running speeds and geometric designs. Also, the experiment was implemented on 60 subjects. Based on running speed data and brainwave data, which were obtained from the experiment, this study analyzes anxiety EEG according to running speeds and geometric designs, and finally draws a forecasting model of anxiety EEG by selecting affecting factors of anxiety EEG. Forecasting model shows that left curve is the most influential on anxiety EEG figure. The reason is because when driver is driving on the first-lane, his or her visibility is impeded by a median strip. For this reason, anxiety EEG figure increases. And also steep downward slope and large radius of curve are heavily influential on driver's anxiety EEG figure. It is judged that anxiety EEG figure is increased by high speed on those section. Thus, the forecasting model of anxiety EEG suggested on this study will be utilized for design phase, and will decide the design speed on the superhighway. So, it will be used to make practical and safety road.

Determination of Base Capacity Values for Short-Term Freeway Work Zone (고속도로 단기공사구간 기본용량 결정에 관한 연구)

  • Kim, Sang Gu;Hong, Gil Seong
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.1
    • /
    • pp.37-46
    • /
    • 2013
  • Lane closure in freeway work zone due to maintenance and repair of freeway facilities results in abrupt change of traffic flow. Sudden change of traffic flow results strong interactions among vehicles, and reduces capacity compared to the ordinary traffic condition. Such capacity reduction is likely to cause congestion, traffic queues, and economic loss cost. This study aims to determine the base capacity for a short-term freeway work zone that can be used to establish a work zone schedule in advance without any traffic impact. First, the research collected detector data and schedule data of road works on all freeways in Korea. Second, the research determined 23 study sites finding the capacity values of work zone after matching two kinds of data. All study sites had varying characteristics regarding traffic flow being adjacent to work zone during road works. The capacity values were reviewed in terms of lane closure configuration, the types of work, and design speed. Finally, research proposed capacity values for a short-term freeway work zone with the design speeds of 100 kph, 120 kph and 1,700 pcphpl, 1,750 pcphpl, respectively.

Comparing Empirical Methods of Highway Capacity Estimation (실험적 용량산정 방법 비교 연구)

  • Moon, Jaepil;Cho, Won Bum
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.57-62
    • /
    • 2014
  • PURPOSES : Capacity is a main factor of determining the number of lane in highway design or the level of service in road on operation. Previous studies showed that breakdown may occur before capacity is reached, and then it was concluded that capacity is a stochastic value rather than a deterministic one. In general, estimating capacity is based on average over maximum traffic volume observed for capacity state. This method includes the empirical distribution method(EDM) and would underestimate capacity. This study estimated existing empirical methods of estimating stochastic highway capacity. Among the studied methods are the product limit method(PLM) and the selected method(SM). METHODS : Speed and volume data were collected at three freeway bottleneck sites in Cheonan-Nonsan and West Sea Freeway. The data were grouped into a free-flow state or capacity state with speeds observed in the bottlenecks and the upstream. The data were applied to the empirical methods. RESULTS : The results show that the PLM and SM estimated capacity higher than EDM. The reason is that while the EDM is based on capacity observations only, the PLM and SM are based on free-flow high volumes and capacity observations. CONCLUSIONS : The PLM and SM using both free-flow and capacity observations would be improved to enhance the reliability of the capacity estimation.

Analysis of Elderly Driving Performance at Urban Skewed Intersection using Driving Simulator (고령 운전자 도심부 비 직각 교차로 운전행태 분석)

  • Ha, Tae-Woong;Hong, Seung-Jun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.35-40
    • /
    • 2022
  • In this study, the driving performances of elderly who's age is over 65 were evaluated. The driving simulation was conducted using a compact driving simulation (CDS) and the simulation scenarios were developed from actual roads by replicating geometry of skewed intersection and traffic control devices located in Jungnang-gu, Seoul, Korea. 27 elderly drivers and 10 non-elderly drivers were recruited and participated on the virtual turning right and going straight driving experiment of CDS. Virtual driving data of driving time, speed, distance, acceleration and deceleration speeds, brake power, and steering wheel rotation angle were recorded and analyzed. Generally, elderly driver took more times to pass through the skewed intersection road and showed lower approaching speed as much as 40% and 25% in case of turning right and going straight scenarios respectively. The speed deviation at skewed intersection road between elderly and non-elderly driver is expected to cause frequent lane changes and overtaking.

Reevaluation of Lane Width Widenings on Horizontal Curve Sections (평면곡선부 확폭량 재설정에 관한 연구)

  • 최재성;백종대
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.51-62
    • /
    • 2000
  • The objective of this study was to reevaluate current Korean design values for lane width widenings on horizontal currie sections and to develop a new method for derivation of design values based on low-speed offtracking. For this purpose, earlier research were reviewed and necessary equations were derived. Also, the method for derivation of widening values of Korea was compared with that for other countries. The result showed that present Korean method could not consider the variation of lane widths and design speeds of roads. In this Paper, to solve such problems, the new concept of widening was developed. That is the current concept of widening which concerns only the dimension of vehicles and radius of curves was replaced by a new concept that lane width widenings on horizontal curve sections is the difference between the width required on curries and tangents. The width required on a curve consists of the swept Path of a vehicle, lateral clearance, and additional allowance. The width of a tangent is calculated by multiplying lane width by the number of lanes The result of applying new concept shows that the values derived from new concept are higher than current design values for curries have same radius. This study was based only on low-speed offtracking. Therefor, it is recommended that further studies which consider the superelevation and high-speed effect on offtracking be made to derive more accurate widening values .

  • PDF

Comparison of Estimation Methods for the Density on Expressways Using Vehicular Trajectory Data from a Radar Detector (레이더검지기의 차량궤적 정보기반의 고속도로 밀도산출방법에 관한 비교)

  • Kim, Sang-Gu;Han, Eum;Lee, Hwan-Pil;Kim, Hae;Yun, Ilsoo
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.117-125
    • /
    • 2016
  • PURPOSES : The density in uninterrupted traffic flow facilities plays an important role in representing the current status of traffic flow. For example, the density is used for the primary measures of effectiveness in the capacity analysis for freeway facilities. Therefore, the estimation of density has been a long and tough task for traffic engineers for a long time. This study was initiated to evaluate the performance of density values that were estimated using VDS data and two traditional methods, including a method using traffic flow theory and another method using occupancy by comparing the density values estimated using vehicular trajectory data generated from a radar detector. METHODS : In this study, a radar detector which can generate very accurate vehicular trajectory within the range of 250 m on the Joongbu expressway near to Dongseoul tollgate, where two VDS were already installed. The first task was to estimate densities using different data and methods. Thus, the density values were estimated using two traditional methods and the VDS data on the Joongbu expressway. The density values were compared with those estimated using the vehicular trajectory data in order to evaluate the quality of density estimation. Then, the relationship between the space mean speed and density were drawn using two sets of densities and speeds based on the VDS data and one set of those using the radar detector data. CONCLUSIONS : As a result, the three sets of density showed minor differences when the density values were under 20 vehicles per km per lane. However, as the density values become greater than 20 vehicles per km per lane, the three methods showed a significant difference among on another. The density using the vehicular trajectory data showed the lowest values in general. Based on the in-depth study, it was found out that the space mean speed plays a critical role in the calculation of density. The speed estimated from the VDS data was higher than that from the radar detector. In order to validate the difference in the speed data, the traffic flow models using the relationships between the space mean speed and the density were carefully examined in this study. Conclusively, the traffic flow models generated using the radar data seems to be more realistic.

A Study On Context Sensitive Highway Design Based On Improved Operating Speed Prediction Methods in National Roads (환경 친화적 도로 설계를 위한 기초 연구 (노선대 지형 및 지역 요소를 고려한 일반국도 주행속도 예측 모형))

  • Kim, Sang-Youp;Choi, Jai-Sung
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.17-33
    • /
    • 2005
  • Highway design speed is a very important design element which determines highway design level. When determining highway design speed, one would estimate it utilizing the most likelihood of design speed and vehicle operating speed relationship. Existing operating speed prediction models only include highway geometric characteristics and their impacts on speed, which usually can not consider the impact of highway design speed on surrounding roadway environment and land use pattern. If this happens, excessive highway construction cost and huge environmental impact can occur. In this research project, a new vehicle operating speed prediction model was developed which can reflect the effect of surrounding roadway environment into vehicle speed prediction. The followings are the research findings : Firstly, highway terrain types and land use pattern on national roads were classified and integrated into drivers' visual recognition pattern. This was performed using a data management software. Secondly, the developed highway terrain types and land use pattern were related to vehicle speeds and it was found that there were significant statistical differences among vehicle speed for each different terrain and land use pattern. Thirdly. the General Linear Model analysis was employed to analyze the effects of highway geometric features, terrain types, and land use patterns. For two-lane highway and four-lane highway tested in this research project, it was found that R squares were 0.67 and 0.85, respectively. Additionally an optimal highway design speed range table, based on this research project. was proposed for practical use. This table can be reliably used on South Korean national road design, but discretion is required for applying this table to other types of highways including provincial roads and municipal roads.

Impact Analysis for Transit Oriented Street Design (A Case Study for Kangnam Street in Seoul) (대중교통우선가로제 시행방안 및 기대효과 분석 (강남대로 중앙버스전용차로 도입을 중심으로))

  • 황기연;이조영
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.3
    • /
    • pp.47-56
    • /
    • 2003
  • Considering the high density developments along the major traffic corridors in Seoul, transit-oriented street designs will be a very effective to control traffic congestion along the corridors. For testing the effectiveness, we selected. for our case study, Kangnam Street, which is one of the most highly developed corridors in Seoul The traffic study on Kangnam street in 2000 shows that the daily average bus speed is 11.73km/h, which is 5km/h lower than the auto speed. The Central Bus Lane system was applied on the Kangnam street to test impact on bus speed as well as auto speed. Simulation results show that with Central Bus Lane have been improved the travel speeds of bus as well as auto on Kangnam street from 14.4km/hr to 35.0km/hr and from 25.1km/hr to 26.1km/hr, respectively. The bus market share increases about 6-8 percentages. Especially, 13.4% of bus users are increased for long-distance trips.