Kim, Ye-Ji;Kim, Hyeon-Woong;Nam, Hye-Won;Lee, Nyeon-Yong;Ko, Yun-Seok
The Journal of the Korea institute of electronic communication sciences
/
v.16
no.4
/
pp.689-698
/
2021
In this paper, lane recognition, steering control and speed control algorithms were developed using Bluetooth wireless communication and image processing techniques. Instead of recognizing road traffic signals based on image processing techniques, a methodology for recognizing the permissible road speed by receiving speed codes from electronic traffic signals using Bluetooth wireless communication was developed. In addition, a steering control algorithm based on PWM control that tracks the lanes using the Canny algorithm and Hough transform was developed. A vehicle prototype and a driving test track were developed to prove the accuracy of the developed algorithm. Raspberry Pi and Arduino were applied as main control devices for steering control and speed control, respectively. Also, Python and OpenCV were used as implementation languages. The effectiveness of the proposed methodology was confirmed by demonstrating effectiveness in the lane tracking and driving control evaluation experiments using a vehicle prototypes and a test track.
KSCE Journal of Civil and Environmental Engineering Research
/
v.26
no.3D
/
pp.461-467
/
2006
To detect individual vehicular speed, double loop detection technique has been widely used. This paper investigates four methodologies to measure individual speed using only a single loop sensor in a traveling lane. Two methods developed earlier include estimating the speed by means of (Case 1) the slop of inductance wave form generated by the sensor and (Case 2) the average vehicle lengths. Two other methods are newly developed through this study, which are estimations by measuring (Case 3) the mean of wheelbases using the sensor installed traversal to the traveling lane and (Case 4) the mean of wheel tracks by the sensor installed diagonally to the traveling lane. These four methodologies were field-tested and their accuracy of speed output was compared statistically. This study used Equality Coefficient and Mean Absolute Percentage Error for the assessment. It was found that the method (Case 1) was best accurate, followed by method (Case 4), (Case 2), and (Case 3).
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.3
/
pp.563-570
/
2024
This paper proposes a method to recognize and track drivable lane areas to assist the driver. The main topic is designing a deep-based network that predicts drivable road areas using computer vision and deep learning technology based on images acquired in real time through a camera installed in the center of the windshield inside the vehicle. This study aims to develop a new model trained with data directly obtained from cameras using the YOLO algorithm. It is expected to play a role in assisting the driver's driving by visualizing the exact location of the vehicle on the actual road consistent with the actual image and displaying and tracking the drivable lane area. As a result of the experiment, it was possible to track the drivable road area in most cases, but in bad weather such as heavy rain at night, there were cases where lanes were not accurately recognized, so improvement in model performance is needed to solve this problem.
A novel vision-based scheme of extracting real-time traffic information parameters is presented. The method is based on a region classification followed by a spatio-temporal image analysis. The detection region images for each traffic lane are classified into one of the three categories: the road, the vehicle, and the shadow, using statistical and structural features. Misclassification in a frame is corrected by using temporally correlated features of vehicles in the spatio-temporal image. Since only local images of detection regions are processed, the real-time operation of more than 30 frames per second is realized without using dedicated parallel processors, while ensuring detection performance robust to the variation of weather conditions, shadows, and traffic load.
This paper proposes a framework of superpixel-based vehicle detection method using plane normal vector in disparity space. We utilize two common factors for detecting vehicles: Hypothesis Generation (HG) and Hypothesis Verification (HV). At the stage of HG, we set the regions of interest (ROI) by estimating the lane, and track them to reduce computational cost of the overall processes. The image is then divided into compact superpixels, each of which is viewed as a plane composed of the normal vector in disparity space. After that, the representative normal vector is computed at a superpixel-level, which alleviates the well-known problems of conventional color-based and depth-based approaches. Based on the assumption that the central-bottom of the input image is always on the navigable region, the road and obstacle candidates are simultaneously extracted by the plane normal vectors obtained from K-means algorithm. At the stage of HV, the separated obstacle candidates are verified by employing HOG and SVM as for a feature and classifying function, respectively. To achieve this, we trained SVM classifier by HOG features of KITTI training dataset. The experimental results demonstrate that the proposed vehicle detection system outperforms the conventional HOG-based methods qualitatively and quantitatively.
A quantitative detection method for Salmonella in seafood was developed using a SYBR Green-based real-time PCR assay. The assay was developed using pure Salmonella DNA at different dilution levels [i.e., 1,000 to 2 genome equivalents (GE)]. The sensitivity of the real-time assay for Salmonella in seeded seafood samples was determined, and the minimum detection level was 20 CFU/g, whereas a detection level of 2 CFU/ml was obtained for pure culture in water with an efficiency of ${\geq}85%$. The real-time assay was evaluated in repeated experiments with seeded seafood samples and the regression coefficient ($R^2$) values were calculated. The performance of the real-time assay was further assessed with naturally contaminated seafood samples, where 4 out of 9 seafood samples tested positive for Salmonella and harbored cells <100 GE/g, which were not detected by direct plating on Salmonella Chromagar media. Thus, the method developed here will be useful for the rapid quantification of Salmonella in seafood, as the assay can be completed within 2-3 h. In addition, with the ability to detect a low number of Salmonella cells in seafood, this proposed method can be used to generate quantitative data on Salmonella in seafood, facilitating the implementation of control measures for Salmonella contamination in seafood at harvest and post-harvest levels.
Kim, Joon-Hyung;Song, Tai-Jin;Oh, Cheol;Sung, Nak-Moon
Journal of Korean Society of Transportation
/
v.26
no.5
/
pp.51-62
/
2008
An innovative feature of this study is to propose a methodology for evaluating safety performance in real time based on vehicle trajectory data extracted from video images. The essence of evaluating safety performance is to capture unsafe car-following and lane-changing events generated by individual vehicles traveling within video surveillance area. The proposed methodology derived three indices including real-time safety index(RSI) based on the concept of safe stopping distance, time-to-collision(TTC), and the collision energy based on the conservation of momentum. It is believed that outcomes would be greatly utilized in developing a new generation of video images processing(VIP) based traffic detection systems capable of producing safety performance measurements. Relevant technical challenges for such detection systems are also discussed.
Today, the core technology of an automobile is becoming to IT-based convergence system technology. To cope with many kinds of situations and provide the convenience for drivers, various IT technologies are being integrated into automobile system. In this paper, we propose an convergence system, which is called Augmented Driving System (ADS), to provide high safety and convenience of drivers based on image information processing. From imaging sensor, the image data is acquisited and processed to give distance from the front car, lane, and traffic sign panel by the proposed methods. Also, a converged interface technology with camera for gesture recognition and microphone for speech recognition is provided. Based on this kind of system technology, car accident will be decreased although drivers could not recognize the dangerous situations, since the system can recognize situation or user context to give attention to the front view. Through the experiments, the proposed methods achieved over 90% of recognition in terms of traffic sign detection, lane detection, and distance measure from the front car.
This paper presents a Fuzzy Neural Network (FNN) system to decide whether or not the right information of lanes can be extracted from gray-level images of road scene. The decision of noisy level of input images has been required because much noises usually deteriorates the performance of feature detection based on image processing and lead to erroneous results. As input parameters to FNN, eight noisiness indexes are constructed from a cumulative distribution function (CDF) and proved the indexes being classifiers of images as the good and the bad corrupted by sources of noise by correlation analysis between input images and the indexes. Considering real-time processing and discrimination efficiency, the proposed FNN is structured by eight input parameters, three fuzzy variables and single output. We conduct much experiments and show that our system has comparable performance in terms of false-positive rates.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.10a
/
pp.953-955
/
2014
최근 차량 충돌 방지를 위한 다양한 기술이 상용화되고 있다. FMCW 기반의 레이더 시스템은 구현의 용이성으로 많은 상용차에서 전면 충돌 방지 시스템에 적용되고 있다. 측면 충돌 방지를 위한 BSD(Blind Spot Detection)와 차선변경 보조 시스템(LCA, Lane Change Assistant system)에서는 전방 레이더보다 인식거리가 줄어들고 갱신율이 낮아지므로 고속 FFT 등을 수행하는 신호처리부를 저가격으로 설계가 가능할 것이다. 본 연구에서는 TI사의 MCU인 F28335를 사용하여 근거리를 인식하는 신호처리부를 설계하였다. 이 MCU는 16채널 12bit ADC와 68KB RAM 및 512KB 플래시 메모리를 내장하고, 150MHz 부동소수점 연산을 지원하여 단일 칩으로 신호처리부의 구현이 가능하다. 구현된 시스템은 20m내외의 거리에 있는 장애물에 대하여 10Hz로 갱신이 가능하여 BSD를 위한 기본 기능이 확인되었다. 이러한 구현은 이전의 고가의 DSP나 FPGA를 사용하지 않고 15$이내의 단일 MCU와 간단한 아날로그 회로로 설계되어 저가격의 시스템으로 상용화가 가능할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.