• Title/Summary/Keyword: landslide prediction

Search Result 155, Processing Time 0.029 seconds

APPLICATION OF LOGISTIC REGRESSION MODEL AND ITS VALIDATION FOR LANDSLIDE SUSCEPTIBILITY MAPPING USING GIS AND REMOTE SENSING DATA AT PENANG, MALAYSIA

  • LEE SARO
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.310-313
    • /
    • 2004
  • The aim of this study is to evaluate the hazard of landslides at Penang, Malaysia, using a Geographic Information System (GIS) and remote sensing. Landslide locations were identified in the study area from interpretation of aerial photographs and from field surveys. Topographical and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. The factors chosen that influence landslide occurrence were: topographic slope, topographic aspect, topographic curvature and distance from drainage, all from the topographic database; lithology and distance from lineament, taken from the geologic database; land use from TM satellite images; and the vegetation index value from SPOT satellite images. Landslide hazardous area were analysed and mapped using the landslide-occurrence factors by logistic regression model. The results of the analysis were verified using the landslide location data and compared with probabilistic model. The validation results showed that the logistic regression model is better prediction accuracy than probabilistic model.

  • PDF

Prediction of Outflow Hydrograph caused by Landslide Dam Failure by Overtopping

  • Do, XuanKhanh;Kim, Minseok;Nguyen, H.P.T;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.196-196
    • /
    • 2016
  • Landslide dam failure presents as a severe natural disaster due to its adverse impact to people and property. If the landslide dams failed, the discharge of a huge volume of both water and sediment could result in a catastrophic flood in the downstream area. In most of previous studies, breaching process used to be considered as a constructed dam, rather than as a landslide dam. Their erosion rate was assumed to relate to discharge by a sediment transport equation. However, during surface erosion of landslide dam, the sediment transportation regime is greatly dependent on the slope surface and the sediment concentration in the flow. This study aims to accurately simulate the outflow hydrograph caused by landslide dam by overtopping through a 2D surface flow erosion/deposition model. The lateral erosion velocity in this model was presented as a function of the shear stress on the side wall. The simulated results were then compared and it was coherent with the results obtained from the experiments.

  • PDF

A Comparative Study of the Frequency Ratio and Evidential Belief Function Models for Landslide Susceptibility Mapping

  • Yoo, Youngwoo;Baek, Taekyung;Kim, Jinsoo;Park, Soyoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.597-607
    • /
    • 2016
  • The goal of this study was to analyze landslide susceptibility using two different models and compare the results. For this purpose, a landslide inventory map was produced from a field survey, and the inventory was divided into two groups for training and validation, respectively. Sixteen landslide conditioning factors were considered. The relationships between landslide occurrence and landslide conditioning factors were analyzed using the FR (Frequency Ratio) and EBF (Evidential Belief Function) models. The LSI (Landslide Susceptibility Index) maps that were produced were validated using the ROC (Relative Operating Characteristics) curve and the SCAI (Seed Cell Area Index). The AUC (Area under the ROC Curve) values of the FR and EBF LSI maps were 80.6% and 79.5%, with prediction accuracies of 72.7% and 71.8%, respectively. Additionally, in the low and very low susceptibility zones, the FR LSI map had higher SCAI values compared to the EBF LSI map, as high as 0.47%p. These results indicate that both models were reasonably accurate, however that the FR LSI map had a slightly higher accuracy for landslide susceptibility mapping in the study area.

Suggestion and Evaluation for Prediction Method of Landslide Occurrence using SWAT Model and Climate Change Data: Case Study of Jungsan-ri Region in Mt. Jiri National Park (SWAT model과 기후변화 자료를 이용한 산사태 예측 기법 제안과 평가: 지리산 국립공원 중산리 일대 사례연구)

  • Kim, Jisu;Kim, Minseok;Cho, Youngchan;Oh, Hyunjoo;Lee, Choonoh
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.106-117
    • /
    • 2021
  • The purpose of this study is prediction of landslide occurrence reflecting the subsurface flow characteristics within the soil layer in the future due to climate change in a large scale watershed. To do this, we considered the infinite slope stability theory to evaluate the landslide occurrence with predicted soil moisture content by SWAT model based on monitored data (rainfall-soil moisture-discharge). The correlation between the SWAT model and the monitoring data was performed using the coefficient of determination (R2) and the model's efficiency index (Nash and Sutcliffe model efficiency; NSE) and, an accuracy analysis of landslide prediction was performed using auROC (area under Receiver Operating Curve) analysis. In results comparing with the calculated discharge-soil moisture content by SWAT model vs. actual observation data, R2 was 0.9 and NSE was 0.91 in discharge and, R2 was 0.7 and NSE was 0.79 in soil moisture, respectively. As a result of performing infinite slope stability analysis in the area where landslides occurred in the past based on simulated data (SWAT analysis result of 0.7~0.8), AuROC showed 0.98, indicating that the suggested prediction method was resonable. Based on this, as a result of predicting the characteristics of landslide occurrence by 2050 using climate change scenario (RCP 8.5) data, it was calculated that four landslides could occur with a soil moisture content of more than 75% and rainfall over 250 mm/day during simulation. Although this study needs to be evaluated in various regions because of a case study, it was possible to determine the possibility of prediction through modeling of subsurface flow mechanism, one of the most important attributes in landslide occurrence.

Rock Slope Failure Analysis and Landslide Risk Map by Using GIS (GIS를 이용한 암반사면 파괴분석과 산사태 위험도)

  • Kwon, Hye-Jin;Kim, Gyo-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.12
    • /
    • pp.15-25
    • /
    • 2014
  • In this study, types of rock slope failure are analyzed by considering both joint characteristics investigated on previous landslide regions located at northern part of Mt. Jiri and geographic features of natural slopes deduced from GIS. The landslide prediction map was produced by superposing the frequency ratio layers for the six geographic features including elevation, slope aspect, slope angle, shaded relief, curvature and stream distance, and then the landslide risk map was deduced by combination of the prediction map and the damage map obtained by taking account of humanity factors such as roads and buildings in the study area. According to analysis on geographic features for previous landslide regions, the landslides occurred as following rate: 88% at 330~710 m in elevation, 77.7% at $90{\sim}270^{\circ}$ in slope aspect, 93.9% at $10{\sim}40^{\circ}$ in slope angle, 82.78% at grade3~7 in shaded relief, 86.28% at -5~+5 in curvature, and 82.92% within 400m in stream distance. Approximately 75% of the landslide regions belongs to the region of 'high' or 'very high' grade in the prediction map, and 13.27% of the study area is exposed to 'high risk' of landslide.

A Comparative Assessment of the Efficacy of Frequency Ratio, Statistical Index, Weight of Evidence, Certainty Factor, and Index of Entropy in Landslide Susceptibility Mapping

  • Park, Soyoung;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.67-81
    • /
    • 2020
  • The rapid climatic changes being caused by global warming are resulting in abnormal weather conditions worldwide, which in some regions have increased the frequency of landslides. This study was aimed to analyze and compare the landslide susceptibility using the Frequency Ratio (FR), Statistical Index, Weight of Evidence, Certainty Factor, and Index of Entropy (IoE) at Woomyeon Mountain in South Korea. Through the construction of a landslide inventory map, 164 landslide locations in total were found, of which 50 (30%) were reserved to validate the model after 114 (70%) had been chosen at random for model training. The sixteen landslide conditioning factors related to topography, hydrology, pedology, and forestry factors were considered. The results were evaluated and compared using relative operating characteristic curve and the statistical indexes. From the analysis, it was shown that the FR and IoE models were better than the other models. The FR model, with a prediction rate of 0.805, performed slightly better than the IoE model with a prediction rate of 0.798. These models had the same sensitivity values of 0.940. The IoE model gave a specific value of 0.329 and an accuracy value of 0.710, which outperforms the FR model which gave 0.276 and 0.680, respectively, to predict the spatial landslide in the study area. The generated landslide susceptibility maps can be useful for disaster and land use planning.

Landslide Susceptibility Mapping by Comparing GIS-based Spatial Models in the Java, Indonesia (GIS 기반 공간예측모델 비교를 통한 인도네시아 자바지역 산사태 취약지도 제작)

  • Kim, Mi-Kyeong;Kim, Sangpil;Nho, Hyunju;Sohn, Hong-Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.927-940
    • /
    • 2017
  • Landslide has been a major disaster in Indonesia, and recent climate change and indiscriminate urban development around the mountains have increased landslide risks. Java Island, Indonesia, where more than half of Indonesia's population lives, is experiencing a great deal of damage due to frequent landslides. However, even in such a dangerous situation, the number of inhabitants residing in the landslide-prone area increases year by year, and it is necessary to develop a technique for analyzing landslide-hazardous and vulnerable areas. In this regard, this study aims to evaluate landslide susceptibility of Java, an island of Indonesia, by using GIS-based spatial prediction models. We constructed the geospatial database such as landslide locations, topography, hydrology, soil type, and land cover over the study area and created spatial prediction models by applying Weight of Evidence (WoE), decision trees algorithm and artificial neural network. The three models showed prediction accuracy of 66.95%, 67.04%, and 69.67%, respectively. The results of the study are expected to be useful for prevention of landslide damage for the future and landslide disaster management policies in Indonesia.

A Foundmental Study on the Landslide Hazard Assessment Using Database of Ground Height (표고 데이타베이스에 의한 산사태 위험평가의 기초적 연구)

  • Kang, In Joon;Lee, Hong Woo;Kwak, Jae Ha;Joung, Jae Hyeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.211-218
    • /
    • 1993
  • Landslides, failure of slope stability by natural or artificial factors, occur loss of life and properties. Recently, statistical methods and field measurements are used to a study for prediction of landslide harzard area, but there are so many difficulties to find the occurence system because of its complexity. In this study, authors choose the model area where occured landslides to predict the landslide hazard. Authors made a database of ground height to compare the each topography by scale of 1 : 25,000, 1 : 10,000, 1 : 5,000 and 1 : 1,200. Authors predict to landslide hazard area by the weight of ground height data and slope angle data. Finally, authors could know the possibility of prediction to find the landslide hazard partly.

  • PDF

Development of Landslide Hazard Map Using Environmental Information System: Case on the Gyeongsangbuk-do Province (환경정보시스템을 이용한 산사태 발생위험 예측도 작성: 경상북도를 중심으로)

  • Bae, Min-Ki;Jung, Kyu-Won;Park, Sang-Jun
    • Journal of Environmental Science International
    • /
    • v.18 no.11
    • /
    • pp.1189-1197
    • /
    • 2009
  • The purpose of this research was develop tailored landslide hazard assessment table (LHAT) in Gyeongsangbuk-do Province and propose building strategies on environmental information system to estimate landslide hazard area according to LHAT. To accomplish this purpose, this research investigated factors occurring landslide at 172 landslide occurred sites in 23 city and county of Gyeongsangbuk-do Province and analyzed what factors effected landslide occurrence quantity using the multiple statistics of quantification method(I). The results of analysis, factors affecting landslide occurrence quantity were shown in order of slope position, slope length, bedrock, aspect, forest age, slope form and slope. And results of the development of LHAT for predict mapping of landslide-susceptible area in Gyeongsangbuk-do Province, total score range was divided that 107 under is stable area(IV class), 107~176 is area with little susceptibility to landslide(III class), 177~246 is area with moderate susceptibility to landslide(II class), above 247 area with severe susceptibility to landslide(I class). According to LHAT, this research built landslide attribute database and made 7 digital theme maps at mountainous area located in Goryeong Gun, Seongju-Gun, and Kimcheon-City. The results of prediction on degree of landslide hazard using environmental information system, area with little susceptibility to landslide(III class) occupied 65.56% and severe susceptibility to landslide(I class) occupied 0.51%.

Comparison of Logistic, Bayesian, and Maxent Modelsfor Prediction of Landslide Distribution (산사태 분포 예측을 위한 로지스틱, 베이지안, Maxent의 비교)

  • Al-Mamun, Al-Mamun;Jang, Dong-Ho;Park, Jongchul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.2
    • /
    • pp.91-101
    • /
    • 2017
  • Quantitative forecasting methods based on spatial data and geographic information system have been used in predicting the landslide location. This study compared the simulated results of logistic, Bayesian, and maximum entropy models to understand the uncertainties of each model and identify the main factors that influence landslide. The study area is Boeun gun where 388 landslides occurred in the year of 1998. The verification results showed that the AUC of the three models was 0.84. However, the landslide susceptibility distribution of Maxent model was different from those of the other two models. With the same landslide occurrence data, the result of high susceptible area in Maxent model is smaller than Logistic or Bayesian. Maxent model, however, proved to be more efficient in predicting landslide than the other two models. In Maxent's simulations, the responsible factors for landslide susceptibility are timber age class, land cover, timber diameter, crown closure, and soil drainage. The results suggest that it is necessary to consider the possibility of overestimation when using Logistic or Bayesian model, and forest management around the study area can be an effective way to minimize landslide possibility.