• Title/Summary/Keyword: landslide disaster

Search Result 191, Processing Time 0.027 seconds

Landslide Risk Assessment Using HyGIS-Landslide (HyGIS-Landslide를 이용한 산사태 발생 위험도 평가)

  • Park, Jung-Sool;Kim, Kyung-Tak;Choi, Yun-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.119-132
    • /
    • 2012
  • Recently, forest soil sediment disasters resulting from locally concentrated heavy rainfall have been occurring frequently in steep slope areas. The importance of landslide hazard map is emerging to analyze landslide vulnerable areas. This study was carried out to develop HyGIS-Landslide based on Hydro Geographic Information System in order to analyze forest soil sediment disaster in the mountainous river basin. HyGIS-Landslide is one of HyGIS components designed by considering the landslide hazard criteria of Korea Forest Service. It could show the distribution of landslide hazard areas after calculating the spatial data. In this system, the user could reset the weight of hazard criteria to reflect the regional characteristics of the landslide area. This component provided user interface that could make the latest spatial data available in the area of interest. HyGIS-Landslide could be applied to the surveyor's compensation score and it was possible to reflect the landslide risk exactly through it. Also, it could be used in topographic analysis techniques providing spatial analysis and making topographical parameters in HyGIS. Finally the accuracy could be acquired by calculating the landslide hazard grade map and landslide mapping data. This study applied HyGIS-Landslide at the Gangwon-do province sample site. As a result, HyGIS-Landslide could be applied to a decision support system searching for mountainous disaster risk region; it could be classified more effectively by re-weighting the landslide hazard criteria.

Landslide prediction system by wireless sensor network (무선센서 네트워크를 이용한 산사태 모니터링 기초기술 연구)

  • Kim, Hyung-Woo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.191-195
    • /
    • 2007
  • Recently, landslides frequently happen at a natural slope during period of intensive rainfall. With rapidly increasing population of steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is developed. The system is focused to debris flows which happen frequently during periods of intensive rainfall at steep slopes in Kangwondo. This system is based on the wireless sensor network that is composed of sensor nodes, gateway, and server system. Sensor nodes that are composed of sensing part and communication part are newly developed to detect sensitive ground movement. Sensing part is designed to measure tilt angle and acceleration accurately, and communication part is deployed with Bluetooth (IEEE 802.15. I) module to transmit the data to the gateway. To verify the feasibility of this landslide prediction system, a series of laboratory tests is performed at a small-scale earth slope supplying rainfall by artificial rainfall dropping device. It is found that sensing nodes installed at slope can detect the ground motion when the slope failure starts. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs, and can be applied to ubiquitous computing city (U-City) that is characterized by disaster free.

  • PDF

Evaluating the Influence of Post-Earthquake Rainfall on Landslide Susceptibility through Soil Physical Properties Changes (지진이후 강우의 산사태 발생 영향성 평가를 위한 토양물성값 변화 분석)

  • Junpyo Seo;Song Eu;KiHwan Lee;Giha Lee;Sewook Oh
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.270-283
    • /
    • 2024
  • Purpose: Considering the rising frequency of earthquakes in Korea, it is crucial to revise the rainfall thresholds for landslide triggering following earthquake events. This study was conducted to provide scientific justification and preliminary data for adjusting rainfall thresholds for landslide early warnings after earthquakes through soil physical experiments. Method: The study analyzed the change in soil shear strength by direct shear tests on disturbed and undisturbed samples collected from cut slopes. Also, The study analyzed the soil strength parameters of remolded soil samples subjected to drying and wetting conditions, focusing on the relationship between the degree of saturation after submergence and the strength parameters. Result: Compaction water content variation in direct shear tests showed that higher water content and saturation in disturbed samples led to a significant decrease in cohesion (over 50%) and a reduction in shear resistance angle (1~2°). Additionally, during the ring shear tests, the shear strength was observed to gradually decrease once water was supplied to the shear plane. The maximum shear strength decreased by approximately 65-75%, while the residual shear strength decreased by approximately 53-60%. Conclusion: Seismic activity amplifies landslide risk during subsequent rainfall, necessitating proactive mitigation strategies in earthquake-prone areas. This research is anticipated to provide scientific justification and preliminary data for reducing the rainfall threshold for landslide initiation in earthquake-susceptible regions.

Analysis on the Characteristics of Geomorphological Features Affecting the Initial State of Landslides (초기 산사태 발생에 영향을 미치는 지형요소의 특성분석)

  • Cha, A-Reum;Kim, Tai-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.61-68
    • /
    • 2014
  • The main objective of this study is to evaluate the preliminary landslide hazard based on the identification of geomorphological features, which are believed to be critical values in the initial state of landslides. Two methods, SINMAP and Planarity analyses, are used to simulate those characteristics where landslides are actually located. Results showed that both methods well discriminate geomorphic features between stable and unstable domains in the landslide areas. SINMAP analysis which is the consecutive model considering external factors like infiltration identifies the landslide hazard especially for debris flow type landslides better than plararity analysis focusing on a specific area. This analysis combined with other methods dealing with specific characteristics of geomorphological feature, the accurate landslide hazard will be evaluated.

A Study on the Monitoring Method of Landslide Damage Area Using UAV (UAV를 이용한 산사태 피해지역 모니터링 방법에 관한 연구)

  • Kim, Sung-Bo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1043-1050
    • /
    • 2020
  • In this study, a study was presented on the monitoring technique of landslide area using UAV. In the case of disaster investigation using drone mapping, it can be used at various disaster sites. The mission can be carried out at various disaster sites, including surveys of damage to mountainous areas caused by landslides, building collapses surveys of flood damage, typhoons, earthquakes. The damage investigation plan using drone mapping is expected to be highly utilized at disaster sites where investigators cannot access it like in mountainous areas and where it is difficult to conduct direct damage investigations at the site. Drone mapping technology has many advantages in terms of disaster follow-up, such as recovery. Compared to the existing survey system, which was mainly carried out manually, the investigation time can be drastically reduced, and it can also respond to disaster sites that are difficult to carry out or are difficult to access directly. In addition, it is possible to establish and guide spatial data at the disaster site based on accurate mapping data from the time of the disaster, which has considerable strength in managing the situation of the disaster site, selecting priority areas for recovery, and establishing recovery plans. As such, drone mapping is a technology that can be used in a wide range of sites along with natural disasters and social disasters. If a damage investigation system is established through this, it is believed that it will contribute significantly to the rapid establishment of recovery plans along with the investigation of disaster response time and extent of damage recovery.

Complex Disaster Risk Assessment of Local Road using a Landslide Hazard Map (산사태위험지도를 이용한 도로중심 복합재난 위험도 평가)

  • Kim, Min-Ho;Jang, Chang-Deok;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.31-40
    • /
    • 2022
  • Domestic disaster risk maps are mainly produced and studied as a single disaster map by grid unit and disaster type. In particular, it is necessary to present an evaluation method of the disaster risk map that is more suitable for the relevant facility (local road) in order to utilize the work of practitioners who are mainly in charge of facility maintenance. In this study, an evaluation method was presented to evaluate the risk with a focus on local roads by using the landslide risk map and debris flow risk map provided by the Korea Forest Service. In addition, the risk was evaluated and verified for the provinces located in Gangwon-do. As a result of the evaluation, it was possible to evaluate the risk of grades 1 to 5 for 1,513 evaluation sections in the evaluation section with a total length of 234.59 km.

Effects of forest tending on Landslide (숲가꾸기가 산사태 발생에 미치는 영향)

  • Youn, Ho Joong;Woo, Choongshik;Lee, Chang Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.417-422
    • /
    • 2011
  • In general, forest tending work contributes to preventing landslides by enhancing forest health. In order to quantify beneficial effects of forest tending, landslide occurrences in forest tending area and those in non-forest tending area were compared and analyzed. The landslide had been hit hard in Inje and Pyeongchang county, Gangwon province, following Typhoon 'Bilis' on July 15, 2006. Data on forest tending of Pinus koraiensis and Larix kaempferi stands were acquired from the Inje National Forest Station, North regional forest service. The rate of landslide occurrence was increased sharply just after forest tending work and was decreased as time goes by. The analysis also found that the change in landslide frequency was slight by age class in the non-forest tending area, while it decreased as age class increased in the forest tending area.

An Assessment of Ecological Risk by Landslide Susceptibility in Bukhansan National Park (산사태취약성 분석을 통한 북한산국립공원의 생태적 위험도 평가)

  • Kim, Kyung-Tae;Jung, Sung-Gwan;You, Ju-Han;Jang, Gab-Sue
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.2
    • /
    • pp.119-127
    • /
    • 2008
  • This research managed to establish the space information on incidence factors of landslide targeting Bukhansan National Park and aimed at suggesting a basic data for disaster prevention of a landslide for the period to come in Bukhansan National Park through drawing up the map indicating vulnerability to a landslide and ecological risks by the use of overlay analysis and adding-up estimation matrix analysis methods. This research selected slope angle, slope aspect, slope length, drainage, vegetation index(NDVI) and land use as an assessment factor of a landslide and constructed the spatial database at a level of '$30m\times30m$' resolution. The analysis result was that there existed high vulnerability to a landslide almost all over Uidong and Dobong valleys. As for ecological risks, Dobong valley, Yongueocheon valley, Jeongneung valley and Pyeongchang valley were analyzed to be higher, so it is judged that the impact on a landslide risk should be also considered in time of establishing a management plan for these districts for the time to come.

Landslide Disaster Countermeasures in Korea (한국(韓國)의 산사태방재대책(山沙汰防災對策)에 관한 연구(研究))

  • Woo, Bo Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.63 no.1
    • /
    • pp.51-60
    • /
    • 1984
  • Analysing the reports of disaster-related, average annual death of lives due to the meteorological disasters amounted to be 250, of which about 90 were due to landslide. According to the last 10-year reports, the average area of landslide occurred reaches 275 hectares per year in Korea. The total cost for rehabilitation could annually require more than about 2 billion Won (about US$ 2.5 million). The basic countermeasure policy against such heavy disasters should be definitely taken on prevention rather than rehabilitation after being damaged. However, prevention countermeasures against landslide-related disasters have not been strengthened in Korea although being important. Areas of high landslide hazard must be designated with increase in number from current 10 (35 cities and counties) to 17 (68 cities and counties included : Table 3). Number of regional Erosion Control Stations taking full charge of rehabilitating works on the damaged land resulted from landslide disaster has to increase from currently 15 stations to 25. The stone buttressed terrace structures on the hillside slopes, being typical erosion control measures in Korea have been recently recognized as one of the most effective rehabilitation measures for the land damaged by landslides.

  • PDF

Analysis on Displacement Characteristics of Slow-Moving Landslide on a slope near road Using the Topographic Map and Airborne LiDAR (수치지형도와 항공 LiDAR를 이용한 도로인접 사면 땅밀림 발생지 변위 특성 분석)

  • Seo, Jun-Pyo;Kim, Ki-Dae;Woo, Choong-Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.27-35
    • /
    • 2019
  • The purpose of this study is to analyze the displacement characteristics in slow-moving landslide area using digital elevation model and airborne LiDAR when unpredictable disaster such as slow-moving landslide occurred. We also aimed to provide basic data for establishing a rapid, reasonable and effective restoration plan. In this study, slow-moving landslide occurrence cracks were selected through the airborne LiDAR data, and the topographic changes and the scale of occurrence were quantitatively analyzed. As a result of the analysis, the study area showed horseshoe shape similar to the general form of slow-moving landslide occurrence in Korea, and the direction of movement was in the north direction. The total area of slow-moving landslide damage was estimated to about 2.5ha, length of landsldie scrap 327.3m, average width 19.3m, and average depth 8.6m. The slow-moving landslides did not occur on a large scale but occurred on the adjacent slope where roads were located, caused damage to retaining walls and roads. The field survey of slow-moving landslides was limited by accessibility and safety issues, but there was an advantage that accurate analysis was possible through the airborne LiDAR. However, because airborne LiDAR has costly disadvantages, it has proposed a technique to mount LiDAR on UAV for rapidity, long-term monitoring. In a slow-moving landslide damage area, information such as direction of movement of cracks and change of scale should be acquired continuously to be used in restoration planning and prevention of damage.