• Title/Summary/Keyword: landing performance

Search Result 234, Processing Time 0.03 seconds

Force Control of Main Landing Gear using Magneto-Rheological Damper (MR 댐퍼를 이용한 주륜 착륙장치 하중제어기법 연구)

  • Hyun, Young-O;Hwang, Jae-Up;Hwang, Jae-Hyuk;Bae, Jae-Sung;Lim, Kyoung-Ho;Kim, Doo-Man;Kim, Tae-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.344-349
    • /
    • 2009
  • To improve performance of the main landing gear for helicopters, a semi-active control landing gear is introduced in this paper. An MR damper based on commercial finite element electromagnetic field analysis of an electromagnet has been adapted the shock absorber. Force control algorithm (which maintains constantly the sum of air spring force and damping force as internal forces) which keep the sum of air spring force and damping force constant during landing, has been used for the controller, applied to control the semi-active landing gear. A series of drop simulations using ADAMS has been done with the passive, sky-hook control type, and force control type landing gears. The result of each simulation has been compared to evaluate the landing performance of the proposed force control type landing gear.

Control Strategies for Landing Quadcopters on Ships with Legged Platform Based on Impedance Control (선박 위 착륙을 위한 임피던스 제어기반 쿼드콥터 족형 랜딩플랫폼 제어 전략)

  • Hwang, Seonghyeon;Lee, Seunghyeon;Jin, Seongho;Lee, Inho
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.48-57
    • /
    • 2022
  • In this paper, we propose a legged landing platform for the quadcopter taking off and landing in the ship environment. In the ship environment with waves and winds, the aircraft has risks being overturned by contact impact and excessive inclination during landing on the ship. This landing platform has four landing legs under the quadcopter for balancing and shock relief. In order to make the quadcopter balanced on ships, the position of each end effector was controlled by PID control. And shocks have mainly happened when quadcopter contacts the ship's surface as well as legs move fast. Hence, impedance control was used to cope with the shocks. The performance of the landing platform was demonstrated by a simulation and a prototype in three sea states based on a specific size of a ship. During landing and tracking the slope of the ship's surface, oscillations of rotation and translation from the shock were mitigated by the controller. As a result, it was verified that transient response and stability got better by adding impedance control in simulation models and prototype experiments.

Design of A Simulation S/W for Evaluation of Auto-Landing Algorithms

  • Yoon sug-joon;Kim kang-soo;Ahn jae-joon
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.06a
    • /
    • pp.3-8
    • /
    • 2003
  • A Simulation S/W is developed to evaluate performances of MLS (Microwave Landing System) and IBLS(Integrated Beacon Landing System) in precision auto-landing. For this study classical PID and optimal LQG controllers are developed as well as mathematical models of MLS and IBLS. Ship-landing condition is also considered by assuming sinusoidal movement of the ship in the pitch direction. The simulated aircraft is F-16 in the study of precision auto-landing. For the integrated simulation environment GUI windows are designed for input of parameter values necessary for simulation, such as vehicle performance and environmental data. For validation and verification of models various comparison graphs of simulation outputs are comprised in the GUI design as well as 3D visual simulation of vehicle dynamics.

  • PDF

Sliding Mode Control for an Intelligent Landing Gear Equipped with Magnetorheological Damper

  • Viet, Luong Quoc;Lee, Hyo-sang;Jang, Dae-sung;Hwang, Jai-hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.2
    • /
    • pp.20-27
    • /
    • 2020
  • Several uncertainties in the landing environment of an aircraft are not considered, such as the falling speed, ambient temperature, and sensor noise. These uncertainties negatively affect the performance of the controller applied to a landing gear. The sliding mode control (SMC) method, which maintains the optimal performance of a controller under uncertainties, is used in this study. The landing gear is equipped with a magnetorheological damper that changes the yield shear stress according to the applied magnetic field. The applied controller employs a hybrid control combining Skyhook control and force control. The SMC maintains the optimal performance of the hybrid control by minimizing the tracking error of the damper force, even in various landing environments where parameter uncertainties are applied. The effect of SMC is verified through co-simulation results from Simscape and Simulink.

Force Control of Main Landing Gear using Hybrid Magneto-Rheological Damper (하이브리드 MR댐퍼를 이용한 주륜 착륙장치 하중제어기법 연구)

  • Hyun, Young-O;Hwang, Jae-Up;Hwang, Jae-Hyuk;Bae, Jae-Sung;Lim, Kyoung-Ho;Kim, Doo-Man;Kim, Tae-Wook;Park, Myung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.315-320
    • /
    • 2010
  • To improve not only the basic performance but also the fail-safe performance, power consumption of the main landing gear for helicopters, a semi-active control landing gear using hybrid MR damper, was introduced in this paper. This damper of the configuration to install a permanent magnet in a electromagnet MR damper, was designed by the trade-off study on permanent magnet location and a magnet field analysis. Force control algorithm which keep the sum of air spring force and damping force at a specified value during landing, was used for the controller. The drop simulations using ADAMS Model for this semi-active control landing gear, were done. The improvement of the preceding performances as the result to evaluate the landing performance by the simulations, has been confirmed.

Guidance Laws for Aircraft Automatic Landing (항공기 자동착륙 유도 법칙에 관한 연구)

  • Min, Byoung-Mun;No, Tae-Soo;Song, Ki-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.41-47
    • /
    • 2002
  • In this paper, a guidance law applicable to aircraft automatic landing is proposed and its performance is compared with the conventional ILS-type landing approach. The concept of miss distance, which is commonly used in the missile guidance laws, and Lyapunov stability are effectively combined to obtain the landing guidance law. The new landing guidance law is integrated into the existing controller and is applied to the landing approach and flare phases of landing procedure. Numerical simulation results show that the new landing guidance law is a viable alternative to the conventional strategies that directly control the longitudinal deviation or altitude.

Automatic Landing in Adaptive Gain Scheduled PID Control Law

  • Ha, Cheol-Keun;Ahn, Sang-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2345-2348
    • /
    • 2003
  • This paper deals with a problem of automatic landing guidance and control system design. The auto-landing control system for the longitudinal motion is designed in the classical PID controller. The controller gains are properly adapted to variation of the performance using fuzzy logic as a gain scheduler for the PID gains. This control logic is applied to the problem of the automatic landing control system design. From the numerical simulation using the 6DOF nonlinear model of the associated airplane, it is shown that the auto-landing maneuver is successfully achieved from the start of the flight conditions: 1500 ft altitude, 250 ft/sec airspeed and zero flight path angle.

  • PDF

Nose Landing Gear Drop-test Simulation using Numerical Analysis about Orifice (오리피스 유량해석을 통한 전륜 착륙장치의 착륙성능평가)

  • Hwang, Jaeup;Bae, Jaesung;Hwang, Jaihyuk;Hong, Yehsun;Park, Sangjoon;Chung, Taekyong
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2014
  • This thesis is simulated a aircraft nose landing gear drop-test. flow rate-to-pressure difference characteristics of damping orifices for a nose landing gear is investigated by CFD analyses. Orifice is kind of poppet valve type. it is simulated pressure drop with variable orifice area. it is simulated landing gear model by using ADAMS with CFD result. It's performance evaluated landing gear drop-test and analyzed the results.

Performance Comparison of Depth Map Based Landing Methods for a Quadrotor in Unknown Environment (미지 환경에서의 깊이지도를 이용한 쿼드로터 착륙방식 성능 비교)

  • Choi, Jong-Hyuck;Park, Jongho;Lim, Jaesung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.639-646
    • /
    • 2022
  • Landing site searching algorithms are developed for a quadrotor using a depth map in unknown environment. Guidance and control system of Unmanned Aerial Vehicle (UAV) consists of a trajectory planner, a position and an attitude controller. Landing site is selected based on the information of the depth map which is acquired by a stereo vision sensor attached on the gimbal system pointing downwards. Flatness information is obtained by the maximum depth difference of a predefined depth map region, and the distance from the UAV is also considered. This study proposes three landing methods and compares their performance using various indices such as UAV travel distance, map accuracy, obstacle response time etc.

A Study on the Allowances of Aircraft Landing Distance (항공기 착륙거리의 여유분 산정에 관한 연구)

  • Noh, Kun-Soo;Kim, Woong-Yi
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.3
    • /
    • pp.279-284
    • /
    • 2013
  • Among the phases of flight operations pilots feel much pressure in landing segment. There is a number of factors affecting landing safety while pilots reduce aircraft speeds and make a touchdown and stop completely. If runway length is sufficient for landing, there maybe is no problem. But it is not the case all the time. So it is necessary to confirm whether landing performance is within limits or not. Required landing distance is actual landing distance demonstrated by flight test pilot plus allowances for average airline pilots. FAR(Federal Aviation Regulations) AFM certification is based upon manual landing for dry and wet runway. Other runway conditions are not the certification basis. JAR dictates even contaminated/slippery runway is included by prescribed allowances. Automatic landing is not certification basis, so actual landing distances are provided. In this paper I would like to analyze distance allowances included in each type of runway condition. In addition there is no regulation about allowances for specific runway condition, I would suggest adequate allowances for that case.