• Title/Summary/Keyword: landing dynamic

Search Result 118, Processing Time 0.029 seconds

Landing Dynamic and Key Parameter Estimations of a Landing Mechanism to Asteroid with Soft Surface

  • Zhao, Zhijun;Zhao, JingDong;Liu, Hong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.237-246
    • /
    • 2013
  • It is of great significance to utilize a landing mechanism to explore an asteroid. A landing mechanism named ALISE (Asteroid Landing and In Situ Exploring) for asteroid with soft surface is presented. The landing dynamic in the first turning stage, which represents the landing performance of the landing mechanism, is built by a Lagrange equation. Three key parameters can be found influencing the landing performance: the retro-rocket thrust T, damping element damping $c_1$, and cardan element damping $c_2$. In this paper, the retro-rocket thrust T is solved with considering that the landing mechanism has no overturning in extreme landing conditions. The damping element damping c1 is solved by a simplified dynamic model. After solving the parameters T and $c_1$, the cardan element damping $c_2$ is calculated using the landing dynamic model, which is built by Lagrange equation. The validities of these three key parameters are tested by simulation. The results show a stable landing, when landing with the three estimated parameters T, $c_1$, and $c_2$. Therefore, the landing dynamic model and methods to estimate key parameters are reasonable, and are useful for guiding the design of the landing mechanism.

Dynamic Load Analysis of Aircraft Landing Gear (항공기 착륙장치 동하중 해석)

  • Shin, Jeong-Woo;Kim, Tae-Uk;Hwang, In-Hee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Role of landing gear is to absorb energy which is generated by aircraft ground maneuvering and landing. Generally, in order to absorb the impact energy, oleo-pneumatic type shock absorber is used in aircraft landing gear. Oleo-pneumatic type shock absorber has a good energy absorption efficiency and is light in weight because structure of oleo-pneumatic type shock strut is relatively simple. In this study, dynamic load analysis for swinging arm type landing gear was performed to predict landing loads. Modeling of landing gear was conducted with MSC.ADAMS, and dynamic landing loads were analyzed based on ADS-29. Optimum landing loads were generated through adjustment of damping orifice and the analysis results were presented with various aircraft attitude.

  • PDF

Impact Dynamic Analysis for the Wheel-Type Landing Gear System of Helicopter (헬리콥터 휠타입 착륙장치 충돌특성 연구)

  • Park, Hyo-Geun;Kim, Dong-Man;Kim, Dong-Hyun;Cho, Yun-Mo;Chung, Jae-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.12-22
    • /
    • 2008
  • In this study, the dynamic characteristics for the wheel-type landing gear system of helicopter have been analyzed. Nonlinear multi-body dynamic models of the landing gear system are constructed and the equations of motion, kinematics and internal forces of shock strut are considered. In addition, flexibility effect of the wheel axle with equivalent beam element is taken into account. General purpose commercial finite code, SAMCEF which includes MECANO module is applied. The results of dynamic simulation for various landing and weight conditions are presented and compared with each other. Based on the results, characteristics of impact dynamic behaviors of the landing gear system are practically investigated.

Dynamic Analysis of a Helicopter Landing Gear with Considering Flexible Structural Modes (동체의 유연성을 고려한 헬기 착륙장치의 동특성 해석 연구)

  • Hyun, Young-O;Bae, Jae-Seoung;Kim, Young-Seok;Hwang, Jae-Up;Lim, Kyoung-Ho;Kim, Doo-Man;Kim, Tae-Wook;Hwang, Jai-Hyuk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.33-37
    • /
    • 2007
  • In this paper, a dynamic analysis of a helicopter landing gear with considering flexible structural modes has been investigated. The main body of the helicopter has been modeled as a flexible body using FEM code, then a few selected vibration modes of the helicopter main body have been used as basis for the dynamic analysis of the helicopter landing gear. The simulation of dynamic analysis was carried out on the base of ADAMS aircraft module. It has been found by a series of simulation that the flexible structural modes has a significant effect on the dynamic characteristics of helicopter landing gear as the flexibility of the main body is increased.

  • PDF

Dynamic Analysis of Aircraft Landing Gear under Nonstationary Random Excitations (비정상 랜덤 가진력을 받는 항공기 착륙장치의 동특성 해석)

  • 황재혁;유병성;박명호
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.251-259
    • /
    • 1998
  • The motion of an aircraft landing gear over rough runway at variable speed is nonstationary. In this paper, a method for the computation of nonstationary response variance is presented which uses a state space form for the combination of landing gear and runway excitation. The dynamic characteristics of the landing gear under nonstationary random excitations has also been analyzed using the proposed method. The formulation is for linear systems of arbitrary order and allows any deterministic velocity history. It has been found by a series of simulation that correlation parameter, damping coefficients of landing gear and tire, and velocity profiles play a prominent role on the dynamic characteristics.

  • PDF

Dynamic Behaviors and Optimal Design of an Aircraft Nose Landing Gear using ADAMS (ADAMS를 이용한 항공기 전륜착륙장치의 동적거동해석 및 최적설계)

  • Kim, Sun-Goo;Kim, Cheol;Kim, Young-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.612-618
    • /
    • 2007
  • The dynamic behaviors of a KT-1 family aircraft nose landing gear have been analyzed and the optimal design of an aircraft shock absorber has been conducted to improve efficiency of shock energy absorption. The nose landing gear is modeled as a 2 DOF system using ADAMS and various operational and environmental landing conditions were considered. The results of dynamic simulation for various landing conditions agree well with experiments. Also the effect of parameters of a shock strut on the dynamic behaviors and on shock energy absorption of the nose landing gear has been evaluated for optimal design to define design variables. It has been found that the parameters of a shock strut such as oil-density and orifice area have more effects on dynamic behaviors than those of operation conditions. Optimal design is performed to maximize the efficiency of shock energy absorption using Feasible Direction Method. As a result the design values of the shock strut for maximum efficiency of shock energy absorption are derived and it turns out that efficiency and dynamic behaviors of the nose landing gear were improved by the optimal design.

Hard-landing Simulation by a Hierarchical Aircraft Landing Model and an Extended Inertia Relief Technique

  • Lee, Kyu Beom;Jeong, Seon Ho;Cho, Jin Yeon;Kim, Jeong Ho;Park, Chan Yik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.394-406
    • /
    • 2015
  • In this work, an efficient aircraft landing simulation strategy is proposed to develop an efficient and reliable hard-landing monitoring procedure. Landing stage is the most dangerous moment during operation cycle of aircraft and it may cause structural damage when hard-landing occurs. Therefore, the occurrence of hard-landing should be reported accurately to guarantee the structural integrity of aircraft. In order to accurately determine whether hard-landing occurs or not from given landing conditions, full nonlinear structural dynamic simulation can be performed, but this approach is highly time-consuming. Thus, a more efficient approach for aircraft landing simulation which uses a hierarchical aircraft landing model and an extended inertia relief technique is proposed. The proposed aircraft landing model is composed of a multi-body dynamics model equipped with landing gear and tire models to extract the impact force and inertia force at touch-down and a linear dynamic structural model with an extended inertia relief method to analyze the structural response subject to the prescribed rigid body motion and the forces extracted from the multi-body dynamics model. The numerical examples show the efficiency and practical advantages of the proposed landing model as an essential component of aircraft hard-landing monitoring procedure.

Thermotherapy and Dynamic Warm-up on the Kinetic Parameters during Drop-landing (드롭랜딩 시 국소부위 온열처치와 동적 준비운동이 하지의 운동역학적 변인에 미치는 영향)

  • Kim, Sungmin;Song, Jooho;Han, Sanghyuk;Moon, Jeheon
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.4
    • /
    • pp.297-307
    • /
    • 2021
  • Objective: The aim of this study was to analyze kinetic variables between thermotherapy and dynamic warm-up during drop-landing. Method: Twenty male healthy subjects (Age: 21.85 ± 1.90 years, Height: 1.81 ± 0.06 cm, Weight: 68.5 ± 7.06 kg) underwent three treatments applied on the thermotherapy of femoral muscles and a dynamic warm-up. The thermotherapy was performed for 15 minutes while sitting in a chair using an electric heating pad equipped with a temperature control device. Dynamic warm-up performed 14 exercise, a non-treatment was sitting in a chair for 15 minutes. Core temperature measurements of all subjects were performed before landing at a height of 50 cm. During drop-landing, core temperature, joint angle, moment, work of the sagittal plane was collected and analyzed. All analyses were performed with SPSS 21.0 and for repeated measured ANOVA and Post-hoc was Bonferroni. Results: Results indicated that Thermotherapy was increased temperature than other treatments (p = .000). During drop-landing, hip joint of dynamic warm-up was slower for angular velocity (p < .005), and left ankle joint was fastest than other treatments (p = .004). Maximum joint moment of dynamic warm-up was smaller for three joints (hip extension: p = .000; knee flexion/extension: p = .001/.000; ankle plantarflexion: p = .000). Negative work of dynamic warm-up was smaller than other treatments (p = .000). Conclusion: In conclusion, the thermotherapy in the local area doesn't affect the eccentric contraction of the thigh. The dynamic warm-up treatment minimized the joint moment and negative work of the lower joint during an eccentric contraction, it was confirmed that more active movement was performed than other treatment methods.

An operational analysis and dynamic behavior for a landing gear system using ADAMS (ADAMS를 이용한 항공기 착륙장치 작동 동적거동 해석)

  • Choi, Sup;Kwon, Hyuk-Beom;Chung, Sang-Joon;Jung, Chang-Rae;Sung, Duck-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.110-117
    • /
    • 2003
  • The operational characteristics of the landing gear retraction/extension depend on the complexity of design variables operational/environmental conditions. In order to meet the requirements of minimum stow area and performance, the integration of the landing gear system requires operational kinematic and dynamic analysis considering an effect of its related system. This study investigates operational dynamic behaviors of the T-50 landing gear system using ADAMS. Taking into account for various operational/environmental conditions, an analysis of dynamic behavior on the landing gear operational characteristics is performed with experience derived from a wide range of proprietary designs. Analytical results are presented for discussing the effects of temperature, aerodynamic and maneuver load on normal/emergency operation of the landing gears and doors. This analysis leads us to the conclusion that the proposed program is shown to be a better quantitative one that apply to a new development and troubleshooting of the landing gear system.

Dynamic Analysis of Aircraft Landing Gear under Nonstationary Random Excitations (비정상 랜덤 가진력을 받는 항공기 착륙장치의 동특성 해석)

  • 황재혁;유병성;박명호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.60-68
    • /
    • 1997
  • The motion of an aircraft landing gear over rough runway at variable speed is nonstationary. In this paper a method for the computation of nonstationary response variance is presented which uses a state space form for the combination of landing gear and runway excitation. The dynamic characteristics of the landing gear under nonstationary random excitations has also been analyzed using the proposed method. The formulation is for linear systems of arbitrary order and allows any deterministic velocity history. It has been found by a series of simulation that correlation parameter, damping coefficients of landing gear and tire, and velocity profiles plays a prominent role on the dynamic characteristics.

  • PDF