• Title/Summary/Keyword: landfall

Search Result 36, Processing Time 0.026 seconds

Dynamic characteristics monitoring of a 421-m-tall skyscraper during Typhoon Muifa using smartphone

  • Kang Zhou;Sha Bao;Lun-Hai Zhi;Feng Hu;Kang Xu;Zhen-Ru Shu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.451-460
    • /
    • 2023
  • Recently, the use of smartphones for structural health monitoring in civil engineering has drawn increasing attention due to their rapid development and popularization. In this study, the structural responses and dynamic characteristics of a 421-m-tall skyscraper during the landfall of Typhoon Muifa are monitored using an iPhone 13. The measured building acceleration responses are first corrected by the resampling technique since the sampling rate of smartphone-based measurement is unstable. Then, based on the corrected building acceleration, the wind-induced responses (i.e., along-wind and across-wind responses) are investigated and the serviceability performance of the skyscraper is assessed. Next, the amplitude-dependency and time-varying structural dynamic characteristics of the monitored supertall building during Typhoon Muifa are investigated by employing the random decrement technique and Bayesian spectral density approach. Moreover, the estimated results during Muifa are further compared with those of previous studies on the monitored building to discuss its long-term time-varying structural dynamic characteristics. The paper aims to demonstrate the applicability and effectiveness of smartphones for structural health monitoring of high-rise buildings.

Analysis and probabilistic modeling of wind characteristics of an arch bridge using structural health monitoring data during typhoons

  • Ye, X.W.;Xi, P.S.;Su, Y.H.;Chen, B.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.809-824
    • /
    • 2017
  • The accurate evaluation of wind characteristics and wind-induced structural responses during a typhoon is of significant importance for bridge design and safety assessment. This paper presents an expectation maximization (EM) algorithm-based angular-linear approach for probabilistic modeling of field-measured wind characteristics. The proposed method has been applied to model the wind speed and direction data during typhoons recorded by the structural health monitoring (SHM) system instrumented on the arch Jiubao Bridge located in Hangzhou, China. In the summer of 2015, three typhoons, i.e., Typhoon Chan-hom, Typhoon Soudelor and Typhoon Goni, made landfall in the east of China and then struck the Jiubao Bridge. By analyzing the wind monitoring data such as the wind speed and direction measured by three anemometers during typhoons, the wind characteristics during typhoons are derived, including the average wind speed and direction, turbulence intensity, gust factor, turbulence integral scale, and power spectral density (PSD). An EM algorithm-based angular-linear modeling approach is proposed for modeling the joint distribution of the wind speed and direction. For the marginal distribution of the wind speed, the finite mixture of two-parameter Weibull distribution is employed, and the finite mixture of von Mises distribution is used to represent the wind direction. The parameters of each distribution model are estimated by use of the EM algorithm, and the optimal model is determined by the values of $R^2$ statistic and the Akaike's information criterion (AIC). The results indicate that the stochastic properties of the wind field around the bridge site during typhoons are effectively characterized by the proposed EM algorithm-based angular-linear modeling approach. The formulated joint distribution of the wind speed and direction can serve as a solid foundation for the purpose of accurately evaluating the typhoon-induced fatigue damage of long-span bridges.

Representation of Model Uncertainty in the Short-Range Ensemble Prediction for Typhoon Rusa (2002) (단기 앙상블 예보에서 모형의 불확실성 표현: 태풍 루사)

  • Kim, Sena;Lim, Gyu-Ho
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • The most objective way to overcome the limitation of numerical weather prediction model is to represent the uncertainty of prediction by introducing probabilistic forecast. The uncertainty of the numerical weather prediction system developed due to the parameterization of unresolved scale motions and the energy losses from the sub-scale physical processes. In this study, we focused on the growth of model errors. We performed ensemble forecast to represent model uncertainty. By employing the multi-physics scheme (PHYS) and the stochastic kinetic energy backscatter scheme (SKEBS) in simulating typhoon Rusa (2002), we assessed the performance level of the two schemes. The both schemes produced better results than the control run did in the ensemble mean forecast of the track. The results using PHYS improved by 28% and those based on SKEBS did by 7%. Both of the ensemble mean errors of the both schemes increased rapidly at the forecast time 84 hrs. The both ensemble spreads increased gradually during integration. The results based on SKEBS represented model errors very well during the forecast time of 96 hrs. After the period, it produced an under-dispersive pattern. The simulation based on PHYS overestimated the ensemble mean error during integration and represented the real situation well at the forecast time of 120 hrs. The displacement speed of the typhoon based on PHYS was closest to the best track, especially after landfall. In the sensitivity tests of the model uncertainty of SKEBS, ensemble mean forecast was sensitive to the physics parameterization. By adjusting the forcing parameter of SKEBS, the default experiment improved in the ensemble spread, ensemble mean errors, and moving speed.

Wind characteristics observed in the vicinity of tropical cyclones: An investigation of the gradient balance and super-gradient flow

  • Tse, K.T.;Li, S.W.;Lin, C.Q.;Chan, P.W.
    • Wind and Structures
    • /
    • v.19 no.3
    • /
    • pp.249-270
    • /
    • 2014
  • Through comparing the mean wind profiles observed overland during the passages of four typhoons, and the gradient wind speeds calculated based on the sea level pressure data provided by a numerical model, the present paper discusses, (a) whether the gradient balance is a valid assumption to estimate the wind speed in the height range of 1250 m ~ 1750 m, which is defined as the upper-level mean wind speed, in a tropical cyclone over land, and (b) if the super-gradient feature is systematically observed below the height of 1500 m in the tropical cyclone wind field over land. It has been found that, (i) the gradient balance is a valid assumption to estimate the mean upper-level wind speed in tropical cyclones in the radial range from the radius to the maximum wind (RMW) to three times the RMW, (ii) the super-gradient flow dominates the wind field in the tropical cyclone boundary layer inside the RMW and is frequently observed in the radial range from the RMW to twice the RMW, (iii) the gradient wind speed calculated based on the post-landfall sea level pressure data underestimates the overall wind strength at an island site inside the RMW, and (iv) the unsynchronized decay of the pressure and wind fields in the tropical cyclone might be the reason for the underestimation.

Assessment of Typhoon Trajectories and Synoptic Pattern Based on Probabilistic Cluster Analysis for the Typhoons Affecting the Korean Peninsula (확률론적 클러스터링 기법을 이용한 한반도 태풍경로 및 종관기후학적 분석)

  • Kim, Tae-Jeong;Kwon, Hyun-Han;Kim, Ki-Young
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.385-396
    • /
    • 2014
  • Lately, more frequent typhoons cause extensive flood and wind damage throughout the summer season. In this respect, this study aims to develop a probabilistic clustering model that uses both typhoon genesis location and trajectories. The proposed model was applied to the 197 typhoon events that made landfall in the Korean peninsula from 1951 to 2012. We evaluate the performance of the proposed clustering model through a simulation study based on synthetic typhoon trajectories. The seven distinguished clusters for typhoons affecting Korean peninsula were identified. It was found that most of typhoon genesis originated from a remote position ($10^{\circ}{\sim}20^{\circ}N$, $120^{\circ}{\sim}150^{\circ}E$) near the Equator. Cluster, type B can be regarded as a major track due to the fact that its frequency is approximately about 25.4% out of 197 events and its direct association with strong positive rainfall anomalies.

Relationship between rainfall in Korea and Antarctic Oscillation in June (6월의 남극진동이 한국의 6월 강우량에 미치는 영향)

  • Choi, Ki Seon;Kim, Baek Jo;Lee, Jong Ho
    • Journal of the Korean earth science society
    • /
    • v.34 no.2
    • /
    • pp.136-147
    • /
    • 2013
  • This study examined the effect of the Antarctic Oscillation (AAO) in June on the June rainfall in Korea by using a correlational statistical analysis. Results showed that there is a highly positive correlation between the two variables. In other words, the June rainfall in Korea is influenced by the Mascarene High and Australian High that are strengthened in the Southern Hemisphere, which is a typical positive AAO pattern. When these two anomalous pressure systems strengthen, the cold cross-equatorial flows in the direction from the region around Australia to the equator are intensified, which in turn, force a western North Pacific subtropical high (WNPSH) to develop northward. This pressure development eventually drives the rain belt to head north. As a result, the Changma begins early in the positive AAO phase and the June rainfall increases in Korea. In addition, a WNPSH that develops more northward increases the landfall (or affecting) frequency of tropical cyclones in Korea, which plays an important role in increasing the June rainfall.

Atmospheric Circulation of Pacific-Japan (PJ) and Typhoon-induced Extremes in the Nakdong River Basin (PJ 대기패턴과 태풍에 의한 낙동강 유역의 수문학적 극치 사상의 지역적 특성 변화 분석)

  • Kim, Jong-Suk;Yoon, Sun-Kwon;Moon, Young-Il;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.12
    • /
    • pp.1309-1319
    • /
    • 2012
  • The East Asia (EA) region including China, Taiwan, Japan, and Korea are especially vulnerable to hydrometerological extremes during the boreal summer (June-September). Therefore, this study pursued an exploratory analysis to improve better understanding of the potential impacts of the PJ pattern on WNP Tropical cyclone (TC) activity and TC-affected extremes based on the Korean Nakdong River Basin. The results show that during the positive PJ years, the large-scale atmospheric environments tend more favorable for the TC activity than those in the negative PJ years. KP-influenced TCs during the positive (negative) PJ years are likely to occur more southwestward (northeastward), recurve at more northwestward (northeastward) locations, and indicate increase (decrease) in frequency over Korea and Japan. Consequently, TCs making landfall are more exhibited over the southeastern portions of South Korea during the positive PJ years.

Wind-excited stochastic vibration of long-span bridge considering wind field parameters during typhoon landfall

  • Ge, Yaojun;Zhao, Lin
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.421-441
    • /
    • 2014
  • With the assistance of typhoon field data at aerial elevation level observed by meteorological satellites and wind velocity and direction records nearby the ground gathered in Guangzhou Weather Station between 1985 and 2001, some key wind field parameters under typhoon climate in Guangzhou region were calibrated based on Monte-Carlo stochastic algorithm and Meng's typhoon numerical model. By using Peak Over Threshold method (POT) and Generalized Pareto Distribution (GPD), Wind field characteristics during typhoons for various return periods in several typical engineering fields were predicted, showing that some distribution rules in relation to gradient height of atmosphere boundary layer, power-law component of wind profile, gust factor and extreme wind velocity at 1-3s time interval are obviously different from corresponding items in Chinese wind load Codes. In order to evaluate the influence of typhoon field parameters on long-span flexible bridges, 1:100 reduced-scale wind field of type B terrain was reillustrated under typhoon and normal conditions utilizing passive turbulence generators in TJ-3 wind tunnel, and wind-induced performance tests of aero-elastic model of long-span Guangzhou Xinguang arch bridge were carried out as well. Furthermore, aerodynamic admittance function about lattice cross section in mid-span arch lib under the condition of higher turbulence intensity of typhoon field was identified via using high-frequency force-measured balance. Based on identified aerodynamic admittance expressions, Wind-induced stochastic vibration of Xinguang arch bridge under typhoon and normal climates was calculated and compared, considering structural geometrical non-linearity, stochastic wind attack angle effects, etc. Thus, the aerodynamic response characteristics under typhoon and normal conditions can be illustrated and checked, which are of satisfactory response results for different oncoming wind velocities with resemblance to those wind tunnel testing data under the two types of climate modes.

Characteristics of Strong Wind Occurrence in the Southwestern Region of Korea (한반도 남서지역에서 발생한 강풍의 원인별 특성 분석)

  • Kim, Baek-Jo;Lee, Seong-Lo;Park, Gil-Un
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.37-44
    • /
    • 2009
  • The characteristics of strong wind occurring over the southwestern part of the Korean peninsula are analyzed by using hourly mean wind data observed in Gusan, Mokpo, Yeosu and Wando from 1970 to 2008. The strong wind here is defined as wind speed of more than 13.9 m/s according to Korea Meteorological Administration (KMA)'s strong wind advisory. The causes of strong wind are classified into typhoon, monsoonal (wintertime continent polar air mass) and frontal (cyclone) winds. Typhoon wind is characterized by abrupt change of its speed and direction after and before landfall of typhoon and monsoonal wind by periodicity of wind speed. And frontal wind tend to be changed from southwesterly to northwesterly at observation site with location of frontal surface. Strong winds are mainly occurred in Yeosu by typhoon, Gusan and Mokpo by monsoonal wind, and Mokpo and Yeosu by frontal wind. In particular, in case of frontal wind, the frequency of strong wind in Mokpo decreases while in Yeosu it increases. Monthly frequency of strong wind is high in August in Mokpo and September in Yeosu by typhoon, January in Gusan and December in Mokpo by monsoonal wind, and in April in Mokpo and Yeosu by frontal wind. The duration less than 1 hour of strong wind is prominent in all stations.

Characteristics of tropical cyclones over the western North Pacific in 2007 (2007년 태풍 특징)

  • Cha, Eun-Jeong;Park, Yun-Ho;Kwon, H. Joe
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.183-197
    • /
    • 2008
  • The purpose of this study is to summarize tropical cyclone activity in 2007. 24 tropical cyclones of tropical storm (TS) intensity or higher formed in the western North Pacific and the South China Sea in 2007. The total number is less than the thirty-year (1971~2000) average frequency of 26.7. Out of twenty four tropical cyclones, 14 TCs reached typhoon (TY) intensity, while the rest 10 only reached severe tropical storm (STS) and tropical storm (TS) intensity - four STS and six TS storms. The tropical cyclone season in 2007 began in April with the formation of KONG-REY (0701). From April to May, two TCs formed in the western North Pacific in response to enhanced convective activity there. From June to July, convective activity turned inactive over the sea around the Philippines and in the South China Sea, and the subtropical high was weak over the south of Japan. MAN-YI (0704) and USAGI (0705) moved northwestward and hit Japan, bringing serious damage to the country. After August, convective activity became enhanced over the sea east of the Philippines, and the subtropical high turned strong over the sea south of Japan. Many TCs, which formed over the sea east of the Philippines and in the South China Sea, moved westward and hit China and Vietnam. PABUK (0706), WUTIP (0707), SEPAT (0708), WIPHA (0712), LEKIMA (0714) and KROSA (0715) brought serious damage to some countries including China, the Philippines and Vietnam. On the other hand, FITOW (0709) and NARI (0711) moved northward, bringing serious damage to Japan and Korea. After HAIYAN (0716), all four TCs except FAXAI (0720) formed over the sea east of $140^{\circ}E$. Three typhoons among them affected Republic of Korea, MAN-YI (0704), USAGI (0705) and NARI (0711). Particularly, NARI (0711) moved northward and made landfall at Goheng Peninsula ($34.5^{\circ}N$, $127.4^{\circ}E$) in 1815 KST 16 September. Due to $11^{th}$ typhoon NARI, strong wind and record-breaking rainfall amount was observed in Jeju Island. It was reported that the daily precipitation was 420.0 mm at Jeju city, Jeju Island on 16 September the highest daily rainfall since Jeju began keeping records in 1927. This typhoon hit the southern part of the Korean peninsula and Jeju Island. 18 people lost their lives, 14,170 people were evacuated and US$ 1.6 billion property damage was occurred.