• Title/Summary/Keyword: land-based pollution load

Search Result 38, Processing Time 0.021 seconds

Grid Based Nonpoint Source Pollution Load Modelling

  • Niaraki, Abolghasem Sadeghi;Park, Jae-Min;Kim, Kye-Hyun;Lee, Chul-Yong
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.246-251
    • /
    • 2007
  • The purpose of this study is to develop a grid based model for calculating the critical nonpoint source (NPS) pollution load (BOD, TN, TP) in Nak-dong area in South Korea. In the last two decades, NPS pollution has become a topic for research that resulted in the development of numerous modeling techniques. Watershed researchers need to be able to emphasis on the characterization of water quality, including NPS pollution loads estimates. Geographic Information System (GIS) has been designed for the assessment of NPS pollution in a watershed. It uses different data such as DEM, precipitation, stream network, discharge, and land use data sets and utilizes a grid representation of a watershed for the approximation of average annual pollution loads and concentrations. The difficulty in traditional NPS modeling is the problem of identifying sources and quantifying the loads. This research is intended to investigate the correlation of NPS pollution concentrations with land uses in a watershed by calculating Expected Mean Concentrations (EMC). This work was accomplished using a grid based modelling technique that encompasses three stages. The first step includes estimating runoff grid by means of the precipitation grid and runoff coefficient. The second step is deriving the gird based model for calculating NPS pollution loads. The last step is validating the gird based model with traditional pollution loads calculation by applying statistical t-test method. The results on real data, illustrate the merits of the grid based modelling approach. Therefore, this model investigates a method of estimating and simulating point loads along with the spatially distributed NPS pollution loads. The pollutant concentration from local runoff is supposed to be directly related to land use in the region and is not considered to vary from event to event or within areas of similar land uses. By consideration of this point, it is anticipated that a single mean estimated pollutant concentration is assigned to all land uses rather than taking into account unique concentrations for different soil types, crops, and so on.

  • PDF

A Study of GIS-based Estimation of Pollutant Loads in Accordance with Spatial Landuse Variation - Focussing on Wangsook Watershed - (토지이용의 공간적 다양성에 따른 GIS 기반 오염부하 산정에 관한 연구 - 왕숙천 유역을 중심으로 -)

  • Kim, Kyoung-Soon;Kim, Kye-Hyun;Kwon, Oh-Jun
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.5
    • /
    • pp.305-315
    • /
    • 2005
  • The scheme to classify pollution sources in Korean TMDL planning has been pointed out too much complex to implement practically because of requiring a wide range of items to be collected from a field. Within a deficient situation to collect field data, the mathematical scheme that focuses only on counting an uniform area ratio of the different land uses to estimate of pollutant loads from individual sub-catchments has been used without taking into account of the spatial characteristics of major land uses as well as the locations of pollution sources in each sub-catchment. It would cause to significant level of errors to estimate the pollution loads. Therefore, this study proposes a renovated scheme that can be adopted more easily to classify pollution sources in the watershed and reduce the estimation errors in the spatial distribution of pollution sources by introducing a spatial analysis based on digital land cover maps. In order to estimate a unit area to calculate the uniform pollution load, the pollution response unit area that is locating spatially at the same place and having same land use is identified through the application of GIS overlay technique. Unlikely existing conventional method to calculate the pollution load based on equal distribution of pollutants for each administrative boundary, it is assumed that the pollution load from household and livestock sources are generated and washed off from only residential areas. While, pollution from business population comes from commercial area and industrial load from wastewater discharge facilities are from industrial areas. From comparison of the calculated results from the existing the method and the proposed one, it is found that although the estimation of pollution load from sub-catchment in the case of the existing conventional method application results in negligible difference in total pollution amounts from the whole area of Wangsook watershed as a study area, significant difference of pollution load among sub-catchment in which pollution response unit areas are diverse, however, appears in the case of the application of the renovated scheme.

Analysis of Unit Pollution Load on Highway runoff (고속도로 노면 강우유출 오염부하 원단위 산정)

  • Kang, Hee-Man;Lee, Doo-Jin;Bae, Woo-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.55-68
    • /
    • 2012
  • Impervious surface increase due to urbanization, one of the leading causes of pavement increased the runoff coefficient, peak flow, and reducing the infiltration flow and thereby causing flooding and river erosion is occurring in aquatic ecosystems are known to impair. This study aimed to classify use type of detailed land into the road, reststop, tollgates and etc. focused on major domestic highways, to understand the characteristics of rainfall runoff pollutants and to calculate applicable unit pollution load. Because of high runoff coefficient and short travel time to drainage. first flush occurred clearly. Average EMCs of runoff in the highway was investigated as TSS 108.47 mg / L, COD 28.16 mg / L, BOD 13.61 mg / L, TN 6.38 mg / L, TP 0.03 mg / L, Cu 118.17 ${\mu}g$ / L, Pb 345.3 ${\mu}g$ / L, Zn 349.47 ${\mu}g$ / L. Unit pollution loads calculated by detailed land use area of highways based on average annual rainfall, EMCs, applicable basin areas and etc. were 46.6 kg/km2/day of BOD, 1.4 kg/km2/day of TP, 8.81 kg / km2/day of TN and these were BOD 50.8%, TP 66.7%, TN 64.4%in comparison of the unit pollution loads which applies fallow land standards of the TMDL(Total Maximum Daily Load). It was considered that discharged loads can be excessively calculated in case highway non-point management plans based on unit pollution load of the current land standard.

Application of the High Resolution Aerial Images to Estimate Nonpoint Pollution Loads in the Unit Load Approach (원단위법에 의한 비점오염부하량 산정 시 토지피복 특성을 반영하는 고해상도 항공영상의 활용방안)

  • Lee, Bum-Yeon;Lee, Chang-Hee;Lee, Su-Woong;Ha, Do
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.5
    • /
    • pp.281-291
    • /
    • 2009
  • In Total Water Pollutant Load Management System of Korea, unit load approach based on land register data is currently used for the estimation of non-point pollutant load. However, a problem raised that land register data could not always reflect the actual land surface coverages which determine runoff characteristics of non-point pollution sources. As a way to overcome this, we tried to establish quantitative relationships between the aerial images (0.4m resolution) which reflect actual land surface coverages and the land registration maps according to the 19 major designated land-use categories in Kyeongan watershed. Analyses showed different relationships according to the land-use categories. Only a few land-use categories including forestry, road and river showed essentially identical and some categories such as orchard, parking lot and sport utility site showed no relationships at all between image data and land register data. Except for the two cases, all the other categories showed statistically significant linear relationships between image data and land register data. The analyses indicate that using high resolution aerial maps is a better way to estimate non-point pollutant load. If the aerial maps are not available, application of the linear relationships as conversion factors of land register data to image data could be an possible option to estimate non-point pollutant loads for the specific land-use categories in Kyeongan watershed.

Unit-load Method for the Estimation of Non-point Pollution Loads by Subcategorizing the Land-use Category Reflected in the National Land Register Data : A Case Study of Kyeongan Watershed in South korea (경안천 유역 지적공부에 나타난 특정지목의 토지이용 특성 세분화를 통한 비점오염 부하량 산정 개선방안)

  • Lee, Bum-Yeon;Lee, Chang-Hee;Ha, Do;Lee, Su-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.598-607
    • /
    • 2010
  • One of constraints in the application of unit-load method to estimate non-point pollution loads in the total water pollutant load management system (TWPLMS) is the limited numbers of applicable unit-loads. Since only 7 unit-loads are currently available for total 28 land-use categories in the national land register data, each unit-loads inevitably have to represent several land-use categories regardless of their actual land coverage characteristics. As a way to minimize the problem, this study suggested a nested application of the available unit-loads based on the analysis of high resolution aerial images taken in the Kyeongan watershed. Statistical analysis of three selected land-use categories such as school, apartment complex, and golf course showed that there exit significant (95% confidence level) relationships between the registered land-uses and actual land coverages. The school and apartment complex currently considered as 100% ground have only 65% and 80% of ground characteristics, respectively. Golf course, which is considered as 100% pasture, has about 5% of ground area. This indicates that the unit-load method using in TWPLMS can give over estimated non-point pollutant loads for the school and apartment complex (19.8~54.4%) but under estimation for the golf course (80.9%).

Calculation of Land Category Area and Pollution Loads according to Real Land Usage using High Resolution Satellite Image (고해상도 영상자료를 이용한 실제토지이용에 따른 지목면적 및 부하량 산정)

  • Park, Jae Hong;Lee, Su Woong;Park, Ju Hyun;Rhew, Doug Hee;Jung, Dong Il;Choi, Hye Mi;Jeon, Woo Song
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.193-204
    • /
    • 2009
  • The study was conducted investigation on land of D-dong in N city which is an urban area and D myeon of N city which is a suburban area, based on high resolution satellite image, to find out actual land usage. As for D-dong in N city, different rate between actual usage and official land information was 0.5~4.8% in terms of 5 major land types (paddy field, farm, ground, forest, and others). D myeon in N city posted 1.4~8.4%, which is higher than that of its counterpart. As for unit load, "land" which is large in terms of load presented a big difference between official information and actual usage. On the other hand, the levels of paddy, field, forest and others posted only small changes in load. In case of T-P, in particular, unit of each land type is lower than BOD and T-N, showing almost no changes in pollution loads.

Land Generated Waste Load Unit Estimation Based on Land Use Map with LP Optimization (LP 최적화에 의한 토지피복도 기반 토지계 발생부하 원단위 산정)

  • Park, Kyung Ok;Lee, Chang Hee
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.226-231
    • /
    • 2016
  • Land Generated Waste Load Unit(LGWLU) estimation based on land use data is required to understand the impact of land use on water quality. The method of estimating LGWLU based on the monitoring data requires a lot of time and manpower. In this study, we propose a method of land pollution unit load estimation based on land use data with LP optimization. Optimization is the process to obtain the best possible optimal solution in a given condition. This study carried out optimization by using excel solver in Microsoft Excel. This study derived LGWLU of BOD, T-N, T-P in Gongju-Si and Seocheon-Gun by using the 2012 land use map made by ministry of environment based on 2010 satellite image. This study about LGWLU estimation is expected to be able to determine more clearly the water pollution caused by land use changes.

Analysis of Characteristics of NPS Runoff and Pollution Contribution Rate in Songya-stream Watershed (송야천 유역의 비점오염물질 유출 특성 및 오염기여율 분석)

  • Kang Taeseong;Yu Nayeong;Shin Minhwan;Lim Kyoungjae;Park Minji;Park Baekyung;Kim Jonggun
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.4
    • /
    • pp.316-328
    • /
    • 2023
  • In this study, the characteristics of nonpoint pollutant outflow and contribution rate of pollution in Songya-stream mainstream and tributaries were analyzed. Further, water pollution management and improvement measures for pollution-oriented rivers were proposed. An on-site investigation was conducted to determine the inflow of major pollutants into the basin, and it was found that pollutants generated from agricultural land and livestock facilities flowed into the river, resulting in a high concentration of turbid water. Based on the analysis results of the pollution load data calculated through actual measurement monitoring (flow and water quality) and the occurrence and emission load data calculated using the national pollution source survey data, the S3 and S6 were selected as the concerned pollution tributaries in the Songya-stream basin. Results of cluster analysis using Pearson correlation coefficient evaluation and Density based spatial clustering of applications with noise (DBSCAN) technique showed that the S3 and S6 were most consistent with the C2 cluster (a cluster of Songya-stream mainstream owned area) corresponding to the mainstream of Songya-stream. The analysis results of the major pollutants in the concerned pollution tributaries showed that livestock and land pollutants were the major pollutants. Consequently, optimal management techniques such as fertilizer management, water gate management in paddy, vegetated filter strip and livestock manure public treatment were proposed to reduce livestock and land pollutants.

Evaluation and Application of CLUE-S Model for Spatio-Temporal Analysis of Future Land use Change in Total Water Pollution Load Management System (오염총량관리제의 시공간적 미래 토지이용 변화분석을 위한 CLUE-S 모델의 적용 및 평가)

  • Ryu, Jichul;Ahn, Ki Hong;Han, Mideok;Hwang, Hasun;Choi, Jaewan;Kim, Yong Seok;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.4
    • /
    • pp.418-428
    • /
    • 2014
  • The purpose of this study is to predict the spatio-temporal changes in land uses and to evaluate land-based pollutant loads in the future under Total Water Pollution Load Management System using CLUE-S model. For these ends, sensitive parameters of conversion elasticities in CLUE-S model were calibrated and these calibrated parameters of conversion elasticities, level II land cover map of year 2009, and 7 driving factors of land use changes were used in predicting future land uses in 2002 with two scenarios(Scenario 1: non area restriction, Scenario 2: area restriction). This projected land use map of 2020 was used to estimate land-based pollutant loads. It was expected that urban areas will increase in 2020 from both scenarios 1 and 2. In Scenario 1, urban areas are expected to increase within greenbelt areas and deforest would be expected. Under Scenario 2, these phenomena were not expected. Also the results of estimation of BOD and TP pollutant loads, the BOD difference between scenarios 1 and 2 was 719 kg/day in urban areas and TP difference was 17.60 kg/day in urban areas. As shown in this study, it was found that the CLUE-S model can be useful in future pollutant load estimations because of its capability of projecting future land uses considering various socio-economic driving factors and area-restriction factors, compared with conventionally used land use prediction model.

GIS based Non-Point Source Pollution Assessment

  • Sadeghi-Niaraki, Abolghasem;Kim, Kye-Hyun;Lee, Chol-Young
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.437-440
    • /
    • 2008
  • In recent years, pollution load calculation has become a topic for research that resulted in the development of numerous GIS modeling methods. The existing pollution method for nonpoint source (NPS) can not be indentified and calculated the amount of the pollution precisely. This research shows that the association of typical pollutant concentrations with land uses in a watershed can provide a reasonably accurate characterization of nonpoint source pollution in the watershed using Expected Mean Concentrations (EMC). The GIS based pollution assessment method is performed for three pollutant constituents: BOD, TN, and TP. First, the runoff grid by means of the precipitation grid and runoff coefficient is estimated. Then, the NPS pollution loads are calculated by grid based method. Finally, the final outputs are evaluated by statistical technique. The results illustrate the merits of the approach. This model verified that GIS based method of estimating spatially distributed NPS pollution loads can lead to more accurate representation of the real world.

  • PDF