• Title/Summary/Keyword: land subsidence

Search Result 89, Processing Time 0.029 seconds

A Study on the Availability of Pohang's Mudstone as a Reclamation Material (매립재로서 포항지역 이암의 유용성에 관한 연구)

  • Lee, Kyu-Hwan;Jung, Dae-Suck;Yang, Tae-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.149-158
    • /
    • 2007
  • Recently, the selection of procurement material for reclamation or road at Pohang area is getting harder. so, it is attempted that mudstones are used for road base material and harbor reclamation. But there is no example that use mudstone to reclamation and the features of the reclaimed land using mudstones have not been made clear yet. We will make clear these features-especially the water absorption and softening, slaking behavior and the geological mechanism, so we will obtain the method to forecast a land subsidence and a decline of land strength. In this study, we examined the adaptedness judgment of mudstones as a reclamation material for road basis material or harbor reclamation material through the laboratory test and pilot test.

Implementation Method of GIS Map for 3D Liquefaction Risk Analysis (3차원 액상화 위험분석을 위한 GIS Map 구현 방안)

  • Lee, Woo-Sik;Jang, Yong Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.10-17
    • /
    • 2020
  • Recently, the liquefaction phenomenon was first discovered in Korea due to a magnitude 5.4 earthquake that occurred in Pohang, Gyeonsangbuk-do. When liquefaction occurs, some of the water and sand are ejected to the ground, producing a space, which leads to various dangerous situations, such as ground subsidence, building collapse, and sinkhole generation. Recently, the necessity of producing a liquefaction risk map in Korea has increased to grasp potential liquefaction areas in advance. Therefore, this study examined the drilling information from the national geotechnical information DB center at the Ministry of Land, Infrastructure, and Transport to produce a liquefaction risk map, and developed a module to implement functions for basic data modeling and 3D analysis based on drilling information database extraction and information. Through this study, effective interlocking technology of the integrated database of national land information was obtained, and three-dimensional information was generated for each stage of liquefaction risk analysis, such as soil resistance value and a liquefaction risk map. In the future, the technology developed in this study can be used as a comprehensive decision support technology for establishing a foundation for building 3D liquefaction information and for establishing a response system of liquefaction.

An analysis of land displacements in terms of hydrologic aspect: satellite-based precipitation and groundwater levels (수문학적 관점에서의 지반 변위 분석: 인공위성 강우데이터와 지하수위 연계)

  • Oh, Seungcheol;Kim, Wanyub;Kang, Minsun;Yoon, Hongsic;Yang, Jungsuk;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1031-1039
    • /
    • 2022
  • As one of the hydrological factors closely related to landslides, precipitation indirectly affects slope stability by generating external forces. Groundwater level fluctuations have attracted more attention lately as factors that directly affect slope stability have become more prominent. Therefore, this study attempted to analyze the relationship between variables through changes in precipitation, groundwater levels, and land displacement. A time series-based analysis was conducted using satellite-based precipitation and point-based groundwater levels in conjunction with the PSInSAR technique to simulate land displacement in urban and mountainous areas. There was a sharp rise in groundwater levels in both urban and mountain areas during heavy rainfall, and a continuous decrease in urban areas when rainfall was low. 6 mm of displacements was observed in the mountainous area as a results of soil outflow from the topsoil layer, which was accompanied by an increased groundwater level. Meanwhile, different results were found in urban area. In response to the rise in groundwater level, the land displacement increases due to the expansion of soil skeletons, while the decrease seems to be attributed to anthropogenic influences. Overall, there was no consistent relationship between groundwater levels and land displacement, which appears to be caused by factors other than hydrological factors. Additional consideration of environmental factors could contribute to a deeper understanding of the relationship between the two factors.

Analysis of PVD Degree of Consolidation with Various Core Types (코어형태에 따른 연직배수재의 압밀도 분석)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Zhanara, Nazarova
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.4
    • /
    • pp.15-20
    • /
    • 2007
  • Recently, the demand for industrial and residental land are increasing with economic growth, but it is difficult to acquire areas for development with good ground condition. For efficient and balanced development of land, new development projects are being carried out not only the areas with inland but those with the soft ground as well. As soft grounds have complex engineering properties and high variations such as ground subsidence especially when their strength is low and depth is deep, we need to accurately analyze the engineering properties of soft grounds and find general measures for stable and economic design and management. Vertical drain technology is widely used to accelerate the consolidation of soft clay deposits and dredged soil under pre-loading and various types of vertical drain are used with there discharge capacity. Under field conditions, discharge capacity is changed with various reason, such as soil condition, confinement pressure, long-term clogging and folding of vertical drains and so on. Therefore, many researcher and engineer recommend the use of required discharge capacity. In this paper, the experiment study were carried out to obtain the discharge capacity of six different types of vertical drains by utilizing the large-scale model tests and discharge capacity, degree of consolidation with the time elapsed.

  • PDF

Development of Spatial Information System for Regional Ground Stability Assessment near Dam area (댐 주변지역 광역적 지반 안정성 평가를 위한 공간 정보시스템 개발)

  • 장범수;이사호;최위찬;최재원;오영철
    • Spatial Information Research
    • /
    • v.9 no.1
    • /
    • pp.125-135
    • /
    • 2001
  • Ground failure such as landslide, rock fall land subsidence by heavy rainfall have damaged to people and property. Especially, the damage to important facility such as dam, bridge, tunnel and industrial complex may be possible. Therefore the ground failure must be assessed and counter plan must be prepared. So, the object of this study is to develop the spatial information system for regional ground stability assessment. For this, the topographic, geologic, soil, forest, land use, rainfall frequency map, and satellite image near 40 dams were collected and constructed to the spatial information system. The spatial information system was developed using Avenue in ArcView 3.2 environment and consists of pull down menus and icons. For application of the spatial information system, regional ground stability was assessed in Andong dam. The assessment was ground failure susceptibility and possibility. The spatial information can be used for regional ground stability assessment, prevention and mitigation of hazard, and management of ground as basic data.

  • PDF

Validation of DEM Derived from ERS Tandem Images Using GPS Techniques

  • Lee, In-Su;Chang, Hsing-Chung;Ge, Linlin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.1 s.31
    • /
    • pp.63-69
    • /
    • 2005
  • Interferometric Synthetic Aperture Radar(InSAR) is a rapidly evolving technique. Spectacular results obtained in various fields such as the monitoring of earthquakes, volcanoes, land subsidence and glacier dynamics, as well as in the construction of Digital Elevation Models(DEMs) of the Earth's surface and the classification of different land types have demonstrated its strength. As InSAR is a remote sensing technique, it has various sources of errors due to the satellite positions and attitude, atmosphere, and others. Therefore, it is important to validate its accuracy, especially for the DEM derived from Satellite SAR images. In this study, Real Time Kinematic(RTK) GPS and Kinematic GPS positioning were chosen as tools for the validation of InSAR derived DEM. The results showed that Kinematic GPS positioning had greater coverage of test area in terms of the number of measurements than RTK GPS. But tracking the satellites near and/or under trees md transmitting data between reference and rover receivers are still pending tasks in GPS techniques.

  • PDF

Ground surface changes detection using interferometric synthetic aperture radar

  • Foong, Loke Kok;Jamali, Ali;Lyu, Zongjie
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.277-290
    • /
    • 2020
  • Disasters, including earthquakes and landslides, have enormous economic and social losses besides their impact on environmental disruption. Iran, and particularly its Western part, is known as an earthquake susceptible area due to numerous strong ground motions. Studying ecological changes due to climate change can improve the public and expert sector's awareness and response to future disastrous events. Synthetic Aperture Radar (SAR) data and Interferometric Synthetic Aperture Radar (InSAR) technologies are appropriate tools for modeling and surface deformation modeling. This paper proposes an efficient approach to detect ground deformation changes using Sentinel-1A. The focal point of this research is to map the ground surface deformation modeling is presented using InSAR technology over Sarpol-e Zahab on 25th November 2018 as a study case. For surface deformation modeling and detection of the ground movement due to earthquake SARPROZ in MATLAB programming language is used and discussed. Results show that there is a general ground movement due to the Sarpol-e Zahab earthquake between -7 millimeter to +18 millimeter in the study area. This research verified previous researches on the advanced image analysis techniques employed for mapping ground movement, where InSAR provides a reliable tool for assisting engineers and the decision-maker in choosing proper policies in a time of disasters. Based on the result, 574 out of 682 damaged buildings and infrastructures due to the 2017 Sarpol-e Zahab earthquake have moved from -2 to +17 mm due to the 2018 earthquake with a magnitude of 6.3 Richter. Results show that mountainous areas have suffered land subsidence, where urban areas had land uplift.

Machine Learning-based landslide susceptibility mapping - Inje area, South Korea

  • Chanul Choi;Le Xuan Hien;Seongcheon Kwon;Giha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.248-248
    • /
    • 2023
  • In recent years, the number of landslides in Korea has been increasing due to extreme weather events such as localized heavy rainfall and typhoons. Landslides often occur with debris flows, land subsidence, and earthquakes. They cause significant damage to life and property. 64% of Korea's land area is made up of mountains, the government wanted to predict landslides to reduce damage. In response, the Korea Forest Service has established a 'Landslide Information System' to predict the likelihood of landslides. This system selects a total of 13 landslide factors based on past landslide events. Using the LR technique (Logistic Regression) to predict the possibility of a landslide occurrence and the accuracy is known to be 0.75. However, most of the data used for learning in the current system is on landslides that occurred from 2005 to 2011, and it does not reflect recent typhoons or heavy rain. Therefore, in this study, we will apply a total of six machine learning techniques (KNN, LR, SVM, XGB, RF, GNB) to predict the occurrence of landslides based on the data of Inje, Gangwon-do, which was recently produced by the National Institute of Forest. To predict the occurrence of landslides, it is necessary to process converting landslide events and factors data into a suitable form for machine learning techniques through ArcGIS and Python. In addition, there is a large difference in the number of data between areas where landslides occurred or not. Therefore, the prediction was performed after correcting the unbalanced data using Tomek Links and Near Miss techniques. Moreover, to control unbalanced data, a model that reflects soil properties will use to remove absolute safe areas.

  • PDF

Characteristics of Nocturnal Boundary Layer Observed in Kyungpook Province (경북지역에서 관측된 야간 대기경계층의 특성)

  • Byung-Hyuk Kwon
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.329-336
    • /
    • 2001
  • Characgcteristics of nocturnal boundary layer(NBL) were analyzed by the upper-air observations data using with the airsonde and pilot balloons from 1994 to 1999 in Kyungpook province. The automate weather boundary layer can become stably stratified when the surface is cooler than the air. Stable nocturnal boundary layer height were estimated from the top of surface stable layer where the vertical gradient of temperature and mixing ratio tend to zero or negative. The depth of the stable nocturnal boundary layer depended largely on the thermal effect rather than the wind effect at nighttime. The NBL was more developed on the land than on the coastal region. The stability index (bulk Richardson number) showed that the NBL was stable when the wind was weak and the vertical gradient of the temperature was strong. The heat budget in the NBL was studied by considering the effect of the radiative and the cooled by both the longwave radiative flux and the divergence of the heat flux, while NBL under the cloudy sky the longwave radiative flux played a role of the warming. It was noted that the heat was not conserved in both cases. To complete the heat budget in the NBL the warming/cooling by advection and subsidence must be considered.

  • PDF

Properties of the variations of volumetric water content on the saturated/unsaturated media by water-level fluctuations (수위변동에 따른 포화/불포화 매질의 체적함수비 변화 특성 평가)

  • Kim, Man-Il;Lim, Heon-Tae;Kim, Hyoung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1076-1082
    • /
    • 2006
  • This study measured the change of media properties using Time domain Reflectometry (TDR) and Tensionmeter (TM) to measure volumetric water content of soil affecting in land subsidence and pollutant diffusion under saturation/unsaturated condition by water-level fluctuations. Also, actual water content compared their changes aspect by dry oven test for quantitative determinations of these measured values. In the case of TM, initial unsaturated condition confirmed that range in dimension of each other different according to their establishment depth, but measured values of TM can know that is shown measured value in almost similar measuring range under drain condition after the first injection. Also, the results of TDR showed that can measure enough change of volumetric water content in saturation/unsaturated condition by water-level fluctuations. Therefore, we are judged that TDR measurement equipment is very effective to measure the variations of volumetric water content and water-level being caused in groundwater level fluctuations.

  • PDF