• Title/Summary/Keyword: land structure

Search Result 1,165, Processing Time 0.029 seconds

Utilization of the Outflowing Groundwater Resources in an Underpass Structure

  • Jin, Kyu-Nam;Park, Jae-Hyeon;Lee, Jung-Min;Lee, Sang-Ho
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.117-121
    • /
    • 2013
  • For underpasses in Yeongjong Sky City business district, the guided drainage system, as a buoyancy prevention system has been designed, and is under construction. This paper investigates the safety of the guided drainage system for underpass structures being constructed in Yeongjong Sky City business district. This paper also calculates the amount of outflowing groundwater generated by the guided drainage system, and proposes alternative usages of the water. In order to investigate safety and field applicability of the guided drainage system for underpasses, characteristics of the surface flow for the area of interest have been analyzed, and the flow change of groundwater following the underpass structure construction has been evaluated using the 3-dimensional groundwater program MODFLOW. The influence of ground water on safety of the underpass structures has been calculated by FLAC2D analysis. For alternative usages for the outflowing groundwater generated by the guided drainage system, utilization methods of the outflowing groundwater in national and international resources have been researched. The amount of an outflowing groundwater to be generated in the area of interest has been analyzed, and efficient potential usages of this groundwater have been researched. When guided drainage technique is applied, the change in flow of groundwater must be evaluated and considered as safety factor relating to the buoyancy of the structure. As a result, safety factor demonstrated more than 1.2, meaning that the underpass structure is safe. The amount of subsoil drain generated by the guided drainage system was also analyzed. The quality and amount of water satisfied the standards and volume requirements, so as to make it applicable for a number of uses, such as X, Y, and Z, and should prove to be a valuable resource as the circumstances of the neighboring area change over time. These resources can be used as basic data for future urban water circulation studies, as well as generating research of alternative water usages.

Investigation on Recently Developed Reinforced Soil Wall System (국내 보강토옹벽 신기술 조사 연구)

  • Lee, Kwang-Wu;Cho, Sam-Deok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.158-167
    • /
    • 2008
  • Reinforced earth wall system has been popularized since its introduction to Korean civil engineering society in early 1980's. Nowadays, the increased use of reinforced earth wall for the purpose of obtaining more land brings several additional demands such as environmental-friendly, better stable and constructible, and economical system. This paper introduces some recently developed reinforced earth wall systems with consideration of the current demands.

  • PDF

A Integrated Model of Land/Transportation System

  • 이상용
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.12a
    • /
    • pp.45-73
    • /
    • 1995
  • The current paper presents a system dynamics model which can generate the land use anq transportation system performance simultaneously is proposed. The model system consists of 7 submodels (population, migration of population, household, job growth-employment-land availability, housing development, travel demand, and traffic congestion level), and each of them is designed based on the causality functions and feedback loop structure between a large number of physical, socio-economic, and policy variables. The important advantages of the system dynamics model are as follows. First, the model can address the complex interactions between land use and transportation system performance dynamically. Therefore, it can be an effective tool for evaluating the time-by-time effect of a policy over time horizons. Secondly, the system dynamics model is not relied on the assumption of equilibrium state of urban systems as in conventional models since it determines the state of model components directly through dynamic system simulation. Thirdly, the system dynamics model is very flexible in reflecting new features, such as a policy, a new phenomenon which has not existed in the past, a special event, or a useful concept from other methodology, since it consists of a lots of separated equations. In Chapter I, II, and III, overall approach and structure of the model system are discussed with causal-loop diagrams and major equations. In Chapter V _, the performance of the developed model is applied to the analysis of the impact of highway capacity expansion on land use for the area of Montgomery County, MD. The year-by-year impacts of highway capacity expansion on congestion level and land use are analyzed with some possible scenarios for the highway capacity expansion. This is a first comprehensive attempt to use dynamic system simulation modeling in simultaneous treatment of land use and transportation system interactions. The model structure is not very elaborate mainly due to the problem of the availability of behavioral data, but the model performance results indicate that the proposed approach can be a promising one in dealing comprehensively with complicated urban land use/transportation system.

  • PDF

Conjugation of Landsat Data for Analysis of the Land Surface Properties in Capital Area (수도권 지표특성 분석을 위한 Landsat 자료의 활용)

  • Jee, Joon-Bum;Choi, Young-Jean
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.54-68
    • /
    • 2014
  • In order to analyze the land surface properties in Seoul and its surrounding metropolitan area, several indices and land surface temperature were calculated by the Landsat satellites (e.g., Landsat 5, Landsat 7, and Landsat 8). The Landsat data came from only in the fall season with Landsat 5 on October 21, 1985, Landsat 7 on September 29, 2003, and Landsat 8 on September 16, 2013. The land surface properties used are the indices that represented Soil Adjusted Vegetation Index (SAVI), Modified Normalized Difference Wetness Index (MNDWI), Normalized Difference Wetness Index (NDWI), Tasseled cap Brightness, Tasseled cap Greenness, Tasseled cap Wetness Index, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI) and the land surface temperature of the area in and around Seoul. Most indices distinguish very well between urban, rural, mountain, building, river and road. In particular, most of the urbanization is represented in the new city (e.g., Ilsan) around Seoul. According to NDVI, NDBI and land surface temperature, urban expansion is displayed in the surrounding area of Seoul. The land surface temperature and surface elevation have a strong relationship with the distribution and structure of the vegetation/built-up indices such as NDVI and NDBI. While the NDVI is positively correlated with the land surface temperature and is also negatively correlated with the surface elevation, the NDBI have just the opposite correlations, respectively. The NDVI and NDBI index is closely associated with the characteristics of the metropolitan area. Landsat 8 and Landsat 5 have very strong correlations (more than -0.6) but Landsat 7 has a weak one (lower than -0.5).

A Study on Forecasting Industrial Land Considering Leading Economic Variable Using ARIMA-X (선행경제변수를 고려한 산업용지 수요예측 방법 연구)

  • Byun, Tae-Geun;Jang, Cheol-Soon;Kim, Seok-Yun;Choi, Sung-Hwan;Lee, Sang-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.214-223
    • /
    • 2022
  • The purpose of this study is to present a new industrial land demand prediction method that can consider external economic factors. The analysis model used ARIMA-X, which can consider exogenous variables. Exogenous variables are composed of macroeconomic variable, Business Survey Index, and Composite Economic Index variables to reflect the economic and industrial structure. And, among the exogenous variables, only variables that precede the supply of industrial land are used for prediction. Variables with precedence in the supply of industrial land were found to be import, private and government consumption expenditure, total capital formation, economic sentiment index, producer's shipment index, machinery for domestic demand and composite leading index. As a result of estimating the ARIMA-X model using these variables, the ARIMA-X(1,1,0) model including only the import was found to be statistically significant. The industrial land demand forecast predicted the industrial land from 2021 to 2030 by reflecting the scenario of change in import. As a result, the future demand for industrial land was predicted to increase by 1.91% annually to 1,030.79 km2. As a result of comparing these results with the existing exponential smoothing method, the results of this study were found to be more suitable than the existing models. It is expected to b available as a new industrial land forecasting model.

Delineation of the Slip Weak Zone of Land Creeping with Integrated Geophysical Methods and Slope Stability Analysis (복합 지구물리탐사와 사면 안정해석 자료를 이용한 땅밀림 지역의 활동연약대 파악)

  • Lee, Sun-Joong;Kim, Ji-Soo;Kim, Kwan-Soo;Kwon, Il-Ryong
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.289-302
    • /
    • 2020
  • To determine the shallow subsurface structure and sliding surface of land creeping in 2016 at Hadong-gun, Gyeongsangnam-do, geophysical surveys (electric resistivity, and refraction seismic methods, borehole televiewer) and slope stability analysis were conducted. The subsurface structure delineated with borehole lithologies and seismic velocity structures provided the information that the sediment layer on the top of the slope was rather as thick as 20 m and the underlying weathered rock (anorthosite) was thinner than 1 m. Based on the tension cracks observed during the geological mapping, televiewer scanning was performed at the borehole BH-2 and detected the intensive fracture zones at the ground-water level, associated with the slip weak zones mapped in dipole-dipole electrical resistivity section. Downslope sliding and slightly upward pushing at the apex of high resistive bedrock explains the curved slip plane of the land creeping. Such a convex structure might play a role of natural toe abutment for preventing the downward development of slip weak zones. In slope stability analysis, the safety factors of the slip weak zone are calculated with varying the groundwater levels for dry and rainy seasons and the downslope is founded to be unstable with safety factor of 0.89 due to fully saturated material in rainy season.

Effects of the ground water level on the stability of an underpass structure considering the degree of surface imperviousness (지표면 유출 특성을 고려한 지하수위 변화가 지하차도 구조물 안정성에 미치는 영향)

  • Jo, Seon-Ah;Hong, Eun-Soo;Cho, Gye-Chun;Jin, Kyu-Nam;Lee, Jung-Min;Han, Shin-In
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.95-107
    • /
    • 2016
  • Ground water is one of important parameters in the designs of underpass structures because urban areas are characterized by soil ground which is relatively permeable than rock ground and a high level of ground water due to low elevation. Therefore, it is important properly to predict variations of the ground water when they can affect underpass structures. In this study, a series of numerical analyses are performed to predict the variations of ground water levels considering the degree of surface imperviousness and LID(Low Impact Development) application. In turn the stability of underground structure is assessed using predicted ground water level. The results show that an increase in the impervious surface area decreases the ground water level. The application of permeable pavement as a LID facility increases the ground water level, improving the infiltration capacity of rainfall into the ground. Seasonal variations of the ground water level are also verified in numerical simulation. The results of this study suggest that reasonable designs of underpass structures can be obtained with the suitable prediction and application of the ground water level considering the surface characteristics.

3D Cadastre Data Model in Korea ; based on case studies in Seoul

  • Park, So-Young;Lee, Ji-Yeong;Li, Hyo-Sang
    • Spatial Information Research
    • /
    • v.17 no.4
    • /
    • pp.469-481
    • /
    • 2009
  • Due to the increasing demands on the efficient use of land and the fast growth of construction technologies, human living space is expanded from on the surface to above and under the surface. By recognizing that the current cadastre system based on 2D was not appropriate to reflect the trend, the researchers are interested in a 3D cadastre. This paper proposed the 3D cadastre data model that is appropriate to protect ownership effectively in Korea. The 3D cadastre data model consists of a 3D cadastre feature model and a 3D cadastre geometry model, and the data are produced by a 3D cadastre data structure. A 3D cadastre feature model is based on 3D rights and features derived from case studies. A 3D cadastre geometry model based on ISO19107 Spatial Schema is modified to be good for 3D cadastre in Korea. A 3D cadastre data structure consists of point, line, polygon and solid primitives. This study finally purposes 1) serving and managing land information effectively, 2) creating rights and displaying ranges about infrastructures above and under surface, 3) serving ubiquitous-based geoinformation, 4) adapting ubiquitous-based GIS to urban development, and 5) regulating relationships between rights of land and registration and management systems.

  • PDF

Consideration of variable structure controller for robust control and its application to robot manipulator (강인한 제어를 위한 가볍 구조 제어기의 고찰 및 로봇 매니퓰레이터의 적용)

  • 남경태;박정일;이석규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.771-774
    • /
    • 1996
  • This paper presents a continuous time varying sliding surface that allows faster tracking and really guarantees robust contro land smooths control inputs. And this method is evaluated by applying to robot manipulator.

  • PDF