• Title/Summary/Keyword: land cover type

Search Result 195, Processing Time 0.024 seconds

Mapping Burned Forests Using a k-Nearest Neighbors Classifier in Complex Land Cover (k-Nearest Neighbors 분류기를 이용한 복합 지표 산불피해 영역 탐지)

  • Lee, Hanna ;Yun, Konghyun;Kim, Gihong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.883-896
    • /
    • 2023
  • As human activities in Korea are spread throughout the mountains, forest fires often affect residential areas, infrastructure, and other facilities. Hence, it is necessary to detect fire-damaged areas quickly to enable support and recovery. Remote sensing is the most efficient tool for this purpose. Fire damage detection experiments were conducted on the east coast of Korea. Because this area comprises a mixture of forest and artificial land cover, data with low resolution are not suitable. We used Sentinel-2 multispectral instrument (MSI) data, which provide adequate temporal and spatial resolution, and the k-nearest neighbor (kNN) algorithm in this study. Six bands of Sentinel-2 MSI and two indices of normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as features for kNN classification. The kNN classifier was trained using 2,000 randomly selected samples in the fire-damaged and undamaged areas. Outliers were removed and a forest type map was used to improve classification performance. Numerous experiments for various neighbors for kNN and feature combinations have been conducted using bi-temporal and uni-temporal approaches. The bi-temporal classification performed better than the uni-temporal classification. However, the uni-temporal classification was able to detect severely damaged areas.

Calculation of Vertical Wind Profile Exponents and Its Uncertainty Evaluation - Jeju Island Cases (풍속고도분포지수 산정 및 불확도 평가 - 제주도 사례)

  • Kim, You-Mi;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-yeol;Kim, Jin-Young;Kim, Chang Ki;Kim, Shin-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.4
    • /
    • pp.11-20
    • /
    • 2016
  • For accurate wind resource assessment and wind turbine performance test, it is essential to secure wind data covering a rotor plane of wind turbine including a hub height. In general, we can depict wind speed profile by extrapolating or interpolating the wind speed data measured from a meteorological tower where multiple anemometers are mounted at different heights using a power-law of wind speed profile. The most important parameter of a power-law equation is a vertical wind profile exponent which represents local characteristics of terrain and land cover. In this study, we calculated diurnal vertical wind profile exponents of 8 locations in Jeju Island who possesses excellent wind resource according to the GUM (Guide to the Expression of Uncertainty in Measurement) to evaluate its uncertainty. Expanded uncertainty is calculated by combined standard uncertainty, which is the result of composing type A standard uncertainty with type B standard uncertainty. Although pooled standard deviation should be considered to derive type A uncertainty, we used the standard deviation of vertical wind profile exponent of each day avoiding the difficult of uncertainty evaluation of diurnal wind profile variation. It is anticipated that the evaluated uncertainties of diurnal vertical wind profile exponents at 8 locations in Jeju Island are to be registered as a national standard reference data and widely used in the relevant areas.

Non-point Source Critical Area Analysis and Embedded RUSLE Model Development for Soil Loss Management in the Congaree River Basin in South Carolina, USA

  • Rhee, Jin-Young;Im, Jung-Ho
    • Spatial Information Research
    • /
    • v.14 no.4 s.39
    • /
    • pp.363-377
    • /
    • 2006
  • Mean annual soil loss was calculated and critical soil erosion areas were identified for the Congaree River Basin in South Carolina, USA using the Revised Universal Soil Loss Equation (RUSLE) model. In the RUSLE model, the mean annual soil loss (A) can be calculated by multiplying rainfall-runoff erosivity (R), soil erodibility (K), slope length and steepness (LS), crop-management (C), and support practice (P) factors. The critical soil erosion areas can be identified as the areas with soil loss amounts (A) greater than the soil loss tolerance (T) factor More than 10% of the total area was identified as a critical soil erosion area. Among seven subwatersheds within the Congaree River Basin, the urban areas of the Congaree Creek and the Gills Creek subwatersheds as well as the agricultural area of the Cedar Creek subwatershed appeared to be exposed to the risk of severe soil loss. As a prototype model for examining future effect of human and/or nature-induced changes on soil erosion, the RUSLE model customized for the area was embedded into ESRI ArcGIS ArcMap 9.0 using Visual Basic for Applications. Using the embedded model, users can modify C, LS, and P-factor values for each subwatershed by changing conditions such as land cover, canopy type, ground cover type, slope, type of agriculture, and agricultural practice types. The result mean annual soil loss and critical soil erosion areas can be compared to the ones with existing conditions and used for further soil loss management for the area.

  • PDF

Soil Quality Assessment for Environmentally Sound Agriculture in the Mountainous Soils; Analysis of Sediment Data and Suggestion of Best Management Practices (산지에서의 환경보전형 농업을 위한 토양의 질 평가;유사자료의 분석과 최적영농방법의 제안)

  • Choi, Joong-Dae;Park, Ji-Sung;Kim, Jeong-Je;Yang, Jae-E;Jung, Yeong-Sang;Yun, Sei-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.201-205
    • /
    • 2000
  • Eleven runoff $plots(3{\times}15\;m)$ were built on a sloping field of a high plateau in Kangwon Province, Korea. The plots were treated with different tillage, residue covers and fertilizers, corn and potato were cultivated, and sediment discharge was measured from the plots for 3 years. Agricultural management practices were monitored around the plots to develop adequate best management practices. The least sediment occurred from the plots with no-till and 100% residue cover $(corn,\;0.1{\sim}2.2\;t/ha/year)$ and with contour tillage and vinyl sheet cover plots $(potato,\;0.1{\sim}0.2\;t/ha/year)$. The largest sediment was measured from the plots with up-and-down till and no cover ($11{\sim}33$ and $16{\sim}31\;t/ha/year$ from corn and potato plots, respectively). The type of organic and commercial fertilizers seemed not to affect sediment discharge. Sediment discharge from contour plots were largely dependent on the collapse of ridges due to the flush of water stored in furrows. The sediment discharge from contour corn and potato plots with no residue cover was $10{\sim}27$ and $16{\sim}24\;t/ha/year$, respectively. No-till with residue cover, vinyl cover for tuber crops, construction of furrow dam, frost heave research, furrow and ridge tillage with furrow dam after tuber crop harvest, limited stalk harvest of row crops, use of winter cover crops, and other common best management practices were recommended to minimize the sediment discharge from a high plateau sloping land culture.

  • PDF

Analysis of Relationship between the Spatial Characteristics of the Elderly Population Distribution and Heat Wave based on GIS - focused on Changwon City - (GIS 기반 노인인구 분포지역의 공간적 특성과 폭염의 관계 분석 - 창원시를 대상으로 -)

  • SONG, Bong-Geun;PARK, Kyung-Hun;KIM, Gyeong-Ah;KIM, Seoung-Hyeon;Park, Geon-Ung;MUN, Han-Sol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.68-84
    • /
    • 2020
  • This study analyzed the relationship between spatial characteristics and heat waves in the distribution area of the elderly population in Changwon, Gyeongsangnam-do. For analysis, the Statistics Census data, the Ministry of Environment land cover, Landsat 8 surface temperature, and the Meteorological Agency's heat wave days data were used. The spatial characteristics of the distribution of the elderly population was classified into 5 types through K-mean cluster analysis considering the land use types. The characteristics of the elderly population by spatial type were higher in the urbanized type(cluster-3), but the proportion of the elderly population was higher in the agricultural and forest area types(cluster-1, cluster-2). In the characteristics of the surface temperature and the heat wave days, the surface temperature was the highest in the urban area, but heat wave days were the highest in the rural area. As a result of analyzing the heat wave characteristics according to the spatial type of the distribution area of elderly population, cluster-2 with the largest area in agricultural areas was highest at 15.95 days, and cluster-3 with a large area in urbanized types was the lowest at 9.41 days and 9.18 days. In other words, the elderly population living in rural areas is more exposed to heat waves than the elderly population living in urban areas, and the damage is expected to increase. The results of this study could be used as basic data to prepare various policy measures for effective management and prevention of vulnerable areas in summer.

A Study on the Layout Type of an Apartment Complex Considering Wind Environment - Focused on the Sinchun Area of Daegu Metropolitan City - (바람환경을 고려한 공동주택의 배치유형에 관한 연구 - 대구광역시 신천지역을 대상으로 -)

  • Son, Kyung-Su;Jung, Eung-Ho
    • Journal of the Korean housing association
    • /
    • v.20 no.3
    • /
    • pp.85-95
    • /
    • 2009
  • One of the most important elements in creating the pleasant residential environment is the wind. For the pleasant residential environment, it is important that the air pollutants are not stagnant but appropriately and swiftly diffused and removed by winds. Especially, the river becomes a main route of wind in the urban core. So, it is necessary to secure the space to circulate the sufficient cool air to this area. But, recently many high-rise apartment complexes have been built along the rivers that have the fine view and pleasant environment. As a result, the cool and fresh air coming from mountains hardly diffuses into the urban core but just flows along the river. Considering the facts above, this study selected types of building layout and kind of land cover as complex or architectural design factors that have an influence on wind environment. Based on the factors, it analyzed change in wind environment according to apartment complex development aiming at the Sinchun area which is Daegu Metropolitan City's main wind corridor. Therefore, when apartment complex development is planned in the future, it can offer basic data for establishing plans for more pleasant complexes. As a result of the analysis, it was shown that the layout type of housing and the building height plan in consideration of wind corridor around the river were pretty effective in increasing the wind speed and circulating the air in the apartment complex. Therefore, if wind corridor is considered when apartment complex development is planed in the future, this study can offer useful information contributing to improve comfort in residential environment in the level of complex building as well as city planning.

Building Wind Corridor Network Using Roughness Length (거칠기길이를 이용한 바람통로 네트워크 구축)

  • An, Seung Man;Lee, Kyoo-Seock;Yi, Chaeyeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.101-113
    • /
    • 2015
  • The purpose of this study is increasing ventilation network usability for urban green space planning by enhancing its practicality and detail. A ventilation network feature extraction technique using roughness length($z_0$) was proposed. Continuously surfaced DZoMs generated from $z_0$(cadastral unit) using three interpolations(IDW, Spline, and Kriging) were compared to choose the most suitable interpolation method. Ventilation network features were extracted using the most suitable interpolation technique and studied with land cover and land surface temperature by spatial overlay comparison. Results show Kriging is most suitable for DZoM and feature extraction in comparison with IDW and Spline. Kriging based features are well fit to the land surface temperature(Landsat-7 ETM+) on summer and winter nights. Noteworthy is that the produced ventilation network appears to mitigate urban heat loads at night. The practical use of proposed ventilation network features are highly expected for urban green space planning, though strict validation and enhancement should follow. (1) $z_0$ enhancement, (2) additional ventilation network interpretation and editing, (3) linking disconnected ventilation network features, and (4) associated dataset enhancement with data integrity should technically preceded to enhance the applicability of a ventilation network for green space planning. The study domain will be expanded to the Seoul metropolitan area to apply the proposed ventilation network to green space planning practice.

Analysis of the Cooling Effects in Urban Green Areas using the Landsat 8 Satellite Data (Landsat 8 위성자료를 이용한 도심녹지 냉각효과 분석)

  • Kim, Geun-Hoi;Lee, Young-Gon;Kim, Jae Hwan;Choi, Hee-Wook;Kim, Baek-Jo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.167-178
    • /
    • 2018
  • Urban green areas or forest regions play an important role in lowering the air temperature of the surrounding areas. This cooling effect does not only affect inside of the green areas, but also extends into neighboring streets and buildings. In this study, the Land Surface Temperature (LST) are retrieved from the Landsat 8 satellite data for 8 clear days in Seoul, Korea from 2013 to 2015, and used for analyzing the cooling effect at an urban green region, Seonjeongneung, located in the southern part of Seoul. The LST distribution from the boundary of the Seonjeongneung presents that the cooling effect of the green areas was found to extend in many directions into the urban areas. The LST estimations of residential and commercial areas around the Seonjeongneung are also analyzed to assess how the green areas affect the type of land cover and the surroundings in the urban areas. Relatively lower LST for the residential areas from the Seonjeongneung boundary ranges from 100 to 250 m, resulting in an average cooling effect of $2.3^{\circ}C$. On the other hand, the LST distribution in the commercial areas shows that the effective distance of green areas are relatively low in the range of 0 to 200 m, which means the average cooling effect is approximately $0.3^{\circ}C$. This result shows that the cooling effect of the Seonjeongneung is clearly noticeable, particularly, the residential areas show greater cooling effect than commercial areas.

Characteristics of Greenup and Senescence for Evapotranspiration in Gyeongan Watershed Using Landsat Imagery (Landsat 인공위성 이미지를 이용한 경안천 유역 증발산의 생장기와 휴면기 분포 특성 분석)

  • Choi, Minha;Hwang, Kyotaek;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.29-36
    • /
    • 2011
  • Evapotranspiration (ET) from the various surfaces needs to be understood because it is a crucial hydrological factor to grasp interaction between the land surface and the atmosphere. A traditional way of estimating it, which is calculating it empirically using lysimeter and pan evaporation observations, has a limitation that the measurements represent only point values. However, these measurements cannot describe ET because it is easily affected by outer circumstances. Thus, remote sensing technology was applied to estimate spatial distribution of ET. In this study, we estimated major components of energy balance method (i.e. net radiation flux, soil heat flux, sensible heat flux, and latent heat flux) and ET as a map using Mapping Evapo-Transpiration with Internalized Calibration (METRIC) satellite-based image processing model. This model was run using Landsat imagery of Gyeongan watershed in Korea on Feb 1, 2003 and Sep 13, 2006. Basic statistical analyses were also conducted. The estimated mean daily ETs had respectively 22% and 11% of errors with pan evaporation data acquired from the Suwon Weather Station. This result represented similar distribution compared with previous studies and confirmed that the METRIC algorithm had high reliability in the watershed. In addition, ET distribution of each land use type was separately examined. As a result, it was identified that vegetation density had dominant impacts on distribution of ET. Seasonally, ET in a growing season represented significantly higher than in a dormant season due to more active transpiration. The ET maps will be useful to analyze how ET behaves along with the circumstantial conditions; land cover classification, vegetation density, elevation, topography.

The Suggestion for Classification of Biotope Type for Nationwide Application (전국적 적용을 위한 비오톱유형분류 제안)

  • Choi, Il-Ki;Oh, Choong-Hyeon;Lee, Eun-Heui
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.6
    • /
    • pp.666-678
    • /
    • 2008
  • The needs for drawing up of biotope map is rapidly spreaded over each local government recently in Korea, according as enhancing of interest about biotope, which is recognized to practical instrument for concretely being able to considering natural environment and ecosystem on all sorts of development plan. However, there are not yet the standard suggestion on biotope types and classification systems and biotope classification criteria. Therefore, each other methodologies are applied to each of local autonomies. First, under such critical mind the biotope types and classification systems were drafted by a review on biotope types, biotope classification systems, and biotope classification criteria of the preceded case studies until now at the inside and outside of the country. And then the purpose of this study is to derive biotope types and biotope classification systems applicable to the whole Korean region through continual feed back such as field surveys in selected representative areas and consultations. As a result of reviewing the case examples, first, the biotope classification systems were mixed two steps system with three steps system and those were composed mostly of the structure of two steps: large and small. Second, land-use, soil pavement ratio, green cover ratio, and vegetation usually were applied to the biotope classification criteria. This study suggests that the biotope classification system is consisted of four steps system: large(biotope class), medium(biotope group), small(biotope type) and detail(sub-biotope type), and the biotope types are classified into 13 types of large step, 45 types of medium step and 127 types of small step. However, this study suggests that the new biotope types on small step or detail step should be continually supplemented with the foundation of classification system proposed in this study because the biotope type classification should consider regional characteristics.