• 제목/요약/키워드: laminates

검색결과 868건 처리시간 0.036초

충격하중을 받은 CFRP적층판의 피로굽힘강도에 미치는 적층구성의 영향 (Influence of Stacking Composition on Fatigue Bending Strenght in CFRP Composite Laminates Subjected to Impact Loading)

  • 임광희;강기광굉;양인영
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.147-155
    • /
    • 1996
  • The purpose of present paper is to estimate the static and fatigue bending strengths of CFRP(carbon fiber reinforced plastic) laminates having impact damage(FOD). The specimens which are formed with the different stacking composition, EPOXY and PEEK matirx and orthotropic and quasi-isotropic laminated plates, are prepared for this experiment. A steel ball is impacted on CFRP laminates, generating impact damages, and the three-point fatigue bending test is carried out by using the impacted laminates to investigate the influence of the stackin composition on the fatigue strength of CFRP laminates.

  • PDF

응력함수에 기초한 복합 하중하의 복합재 적층판의 층간응력 해석 (Stress Function-Based Interlaminar Stress Analysis of Composite Laminates under Complex Loading Conditions)

  • 김흥수;김정윤;김진곤
    • 동력기계공학회지
    • /
    • 제14권3호
    • /
    • pp.52-57
    • /
    • 2010
  • Interlaminar stresses near the free edges of composite laminates have been analyzed considering wall effects. Interface modeling of bonding layer was introduced to explain the wall effect. Using Lekhnitskii stress functions and the principle of complementary virtual work, the interlaminar stresses were obtained, which satisfied the traction free boundary conditions not only at the free edges, but also at the top and bottom surfaces of laminates. The interface modeling provides not singular stresses but concentrated finite interlaminar stresses. The significant amount of reductions of stresses at the free edge are observed compared to the results without interface modeling. The real stress state can be predicted accurately and the results demonstrate the usefulness of the proposed interface modeling for the strength design of composite laminates.

섬유강화금속적층재의 강도에 대한 통계적 평가 (The Statistical Evaluation of Strength in Fiber Reinforced Metal Laminates)

  • 손세원;장정원;이혜영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.815-819
    • /
    • 1994
  • In this paper, the tensile strength in aluminum alloy 5052, Kevlar 49-fiber reinforced aluminum alloy laminates, and Glass-fiber reinforced aluminum alloy laminates, is statistically evaluated. Prepregs manufactured in Han Kuk Fiber is used and FRMLs is cured by Hot-Press. Standard statistical are used to determine the distribution function which best fits FRMLs strength data. The normal,lpg-normal, and two-parameter Weibull distrbuttion are evaluated using the Kolmogoorov-Smirnov goodness-of-fit test. At the 5% significance level, none of these distribution is rejected. The strength of Aluminum alloy 5052 is best fits to a normal distribution. However, the strength of Kevlar 49-fiber reinforced aluminum alloy laminates and Glass-fiber reinforced aluminum alloy laminates is best fits to a two-parameter Weibull distribution.

  • PDF

평직 CFRP 복합재료의 충격잔류강도 평가 (Evaluation of Residual Strength Under Impact Damage in Woven CFRP Composites)

  • 최정훈;강민성;구재민;석창성
    • 한국정밀공학회지
    • /
    • 제29권6호
    • /
    • pp.654-663
    • /
    • 2012
  • Damage induced by low velocity impact loading in aircraft composite is the form of failure which is frequently occurred in aircraft. As the consequences of impact loading in composite laminates, matrix cracking, delamination and eventually fiber breakage for higher impact energies can be occurred. Even when no visible impact damage is observed, damage can exist inside of composite laminates and carrying load of the composite laminates is considerably reduced. The objective of this study is to evaluate and predict residual strength behavior of composite laminates by impact loading and for this, tensile test after impact was carried out on composite laminates made of woven CFRP.

놋취가 있는 복합적층판의 잔류강도 해석 (Residual strength analysis for notched composite laminates)

  • 김성준;황인희
    • 한국항공운항학회지
    • /
    • 제20권1호
    • /
    • pp.103-111
    • /
    • 2012
  • This study reviews several fracture models for predicting the residual strength of notched composite laminates. Representative experimental results on the residual strength of composite laminates containing a notch subjected to static uniaxial tensile loading have been collected from open literature. And notched strength data for T300/5208 are analyzed. The various parameters associated with the fracture models have been determined for laminates. Notched strength data sets are compared with fracture models and the applicability of the different fracture models in predicting the notched strength of composite laminates is discussed. And static tests have been performed on 2.0mm depth notched specimen. And the test results are compared with analysis models.

Implementation of a micro-meso approach for progressive damage analysis of composite laminates

  • Hosseini-Toudeshky, H.;Farrokhabadi, A.;Mohammadi, B.
    • Structural Engineering and Mechanics
    • /
    • 제43권5호
    • /
    • pp.657-678
    • /
    • 2012
  • The mismatch of ply orientations in composite laminates can cause high interlaminar stress concentrations near the free edges. Evaluation of these interlaminar stresses and their role in the progressive damage analysis of laminates is desirable. Recently, the authors developed a new method to relate the physically based micromechanics approach with the meso-scale CDM considering matrix cracking and induced delamination. In this paper, the developed method is applied for the analysis of edge effects in various angle-ply laminates such as $[10/-10]_{2s}$, $[30/-30]_{2s}$ and $[45/-45]_{2s}$ and comparing the results with available traditional CDM and experimental results. It is shown that the obtained stress-strain behaviors of laminates are in good agreement with the available experimental results and even in better agreement than the traditional CDM results. Variations of the stresses and stiffness components through the laminate thickness and near the free edges are also computed and compared with the available CDM results.

XLPE/EPDM laminate의 계면절연파괴괴현상 (Interfacial Breakdown Phenomena in XLPE/EPDM Laminates)

  • 남진호;서광석
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.540-543
    • /
    • 1999
  • In order to determine what indluences the interfacial breakdown in EPDM/XLPE laminates. We studied the interfacial breakdown phenomena at several interfacial conditions. Breakdown strength in laminates pasted with silicone oil was higher than that with silicone grease. As a function of heat treatment time in a vacuum, interfacial breakdown strength increased much in XLPE/EPDM laminates pasted with silicone grease but increased a little in that with silcone oil. FT-IR spectrum of silicone oil was similar to that is silicone grease. FT-lR spectrum of silicone oil was not changed by the heat treatment in a vacuum, but in silicone grease another peak appeared.

  • PDF

부직포가 예각 적층판의 기계적 거동에 미치는 효과 (Effects of Non-Woven Tissue on the Mechanical Behavior of Angle-Ply Laminates)

  • 정성균
    • 한국공작기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.109-115
    • /
    • 2001
  • This paper investigates the mechanical characteristics of angle-ply laminates with non-woven carbon tissue. The lami- nates were made by inserting non-woven carbon tissue at the interface. Specimens were rounded near the tabs by grinding and polishing to reduce the stress concentration. Cyclic loads were applied to the specimens and the stress and fatigue life curves were obtained. The matrix crack density was also evaluated to check the effects of non-woven carbon tissue on the fracture resistance of composite laminates. C-Sean technique was used to evaluate the delamination, and SEM was used to understand the fracture mechanisms of the laminates. Experimental results show that the fatigue strength and life of composite laminates were increased by inserting non- woven carbon tissues. The results also show that the matrix crack density and delamination area were reduced by inserting non-woven carbon tissues.

  • PDF

Bonding evolution of bimetallic Al/Cu laminates fabricated by asymmetric roll bonding

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in materials Research
    • /
    • 제8권1호
    • /
    • pp.1-10
    • /
    • 2019
  • Roll bonding (RB) process of bi-metal laminates as a new noble method of bonding has been widely used in the production of bimetal laminates. In the present study, asymmetric roll bonding process as a new noble method has been presented to produce Al/Cu bimetallic laminates with the thickness reduction ratios 10%, 20% and 30% together with mismatch rolling diameter ($\frac{R_2}{R_1}$) ratio 1:1, 1:1.1 and 1:1.2. ABAQUS as a finite element simulation software was used to model the deformation of samples. The main attention in this study focuses on the bonding properties of Al/Cu samples. The effect of the $\frac{R_2}{R_1}$ ratios was investigated to improve the bond strength. During the simulation, for samples produced with $\frac{R_2}{R_1}=1:1.2$, the vertical plastic strain of samples was reach the maximum value with a high quality bond. Moreover, the peeling surface of samples after the peeling test was investigated by the scanning electron microscopy (SEM).

VARTM 법으로 제작한 탄소-유리/에폭시 하이브리드 적층재의 인장 특성 (Tensile Properties of Carbon-Glass/Epoxy Hybrid Laminates Produced by VARTM)

  • 김연직
    • 대한금속재료학회지
    • /
    • 제49권10호
    • /
    • pp.760-765
    • /
    • 2011
  • This paper presents a study of the tensile behavior of carbon and glass fiber reinforced epoxy hybrid laminates manufactured by vacuum assisted resin transfer molding (VARTM). The objective of this study was to develop and characterize carbon fiber reinforced plastic hybrid composite material that is low cost and light-weight and that possesses adequate strength and stiffness. The effect of position and content of the glass fabric layer on the tensile properties of the hybrid laminates was examined. The strength and stiffness of the hybrid laminates showed a steady decrease with an increase of the glass fabric content this decrease was almost linear. Fracture strain of these laminates showed a slight increasing trend when glass fabric content was increased up to 3 layers, but at a glass fabric content > 3 layers the strain was almost constant. When glass fabric layers were at both outer surfaces, the hybrid laminate exhibited a slightly higher tensile strength and elastic modulus due to the small amount of glass yarn pull-out.