• Title/Summary/Keyword: laminated wood

Search Result 163, Processing Time 0.028 seconds

Static Bending Performances of Cross-Laminated Wood Panels Made with Tropical and Temperate Woods

  • Byeon, Jin-Woong;Kim, Tae-Ho;Yang, Jae-Kyung;Byeon, Hee-Seop;Park, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.726-734
    • /
    • 2018
  • In this study, for using effectively domestic (temperate) small and medium diameter logs as a wooden floorboard, cross-laminated wood panels were manufactured using domestic larch and tulip woods as a base material for teak and merbau wood flooring, and static bending strength performances were measured to investigate the applicability as the base materials of wooden flooring in place of plywood. Static bending MOE was much influenced by the strength performances of the top layer lamina than that of the laminae for base materials. Bending MOR showed the higher values in tulip wood that was hardwoods than in larch wood that was softwoods regardless of the strength performances of the top layer laminae, and it was found that the values were much influenced by the strength performances of the base materials used in the core and bottom layers. However these values were 1.4-2.5 times higher values than the bending strength of the wooden floorboards specified in KS, it was found that it can be sufficiently applied to the base materials of wooden floorboards in place of plywood.

Study on the Possibility of Recycling for Shipbuilding Plywood Waste to Use as the Structural Members (조선산업 합판 폐기물의 구조용재로의 재활용 가능성에 대한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.29-36
    • /
    • 2009
  • Recycling of wood wastes or residues is a good solution for a shortage of wood resources and a rise in the price. Shipbuilding wood wastes were almost used to produce the boards by milling. However, considering the economic value and insufficient resource, recycling with milling is dissatisfied method. This study has been carried out to investigate the recycling possibility of shipbuilding wood waste. There are two kinds of shipbuilding wastes: plywood waste and solid waste. From the results of this study, the following conclusions have been made: 1. Bending properties of plywood and laminated plywood lumber were tested by Korean Standard. 2. The main fracture mode of plywood waste and laminated plywood lumber is that of simple tension. 3. The recommended application for the recycling of shipbuilding wood waste are outdoor wood furnishings, indoor wood furnishings and some wooden building construction materials: interior raw material, wooden pallet, siding, paneling, flooring. picnic table, deck components, porch swing, landscaping timbers, residential fencing, patios, and boardwalks etc.

A Study on Analysis of Characteristics Combustion of Floor Covering Materials (바닥내장재의 연소특성 분석에 관한 연구)

  • Park, Young-Ju;Lee, Hae-Pyeong;Kim, Hyun-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.77-83
    • /
    • 2010
  • In this study, we analyzed the combustion characteristics of four different floor covering materials(wood, monorium, laminatedpaper, and varnish-laminated paper) with regard to their ignitibility, thermal characteristics and flame retardancy by using an ignition temperature tester, a dual cone calorimeter, a thermogravimetric analyzer and limited oxygen index, for their fire risk assessment. According to the result, monorium had the lowest ignition temperature of $325^{\circ}C$ and the laminated paper and the varnish-laminated paper promptly ignited before 7s. Further, the wood showed the largest total heat release of $100MJ/m^2$, and the varnish-laminated paper showed the highest peak heat release rate. From the thermogravimetric analysis, it was shown that all specimens underwent rapid weight loss at $300{\sim}400^{\circ}C$. The limit oxygen indices of the laminated paper and the varnish-laminated paper were in the range of 20~21%, while it was 34% for wood. This study enabled us to confirm that wood, laminated paper and varnish-laminated paper have a relatively short ignition time and are easy to burn but they all have low heat release. In contrast, wood showed the lowest fire risk among them and had excellent flame retardancy but with high heat release.

Formaldehyde Emission of Wood-Based Composite Panels with Different Surface Lamination Materials Using Desiccator Method

  • Park, Byung-Dae;Kang, Eun Chang;Lee, Sang-Min;Park, Jong Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.600-606
    • /
    • 2016
  • Wood-based composite panels such as plywood, particleboard (PB), or medium density fiberboard (MDF) are mostly used in the lamination on their surface for the manufacturing of furniture, or interior building products, the concern on the formaldehyde emission (FE) from the surface laminated wood panels is increasingly attracting attentions from the public. Thus, this study was conducted to understand influence of surface laminating materials to the FE from PB and MDF with or without edge sealing, using 24-hour desiccator method. Both PB samples that had been laminated on their surface with low-pressure laminate (LPL) or polypropylene (PP) film and MDF that had been treated with poly(vinyl chloride) (PVC) or coating were tested for the FE with or without edge sealing. As expected, the FE of PB with the sealed edges decreased to 37.4% and 80.7% with the LPL and PP lamination, respectively. The surface laminated MDF with the sealed edges also showed a decrease in the emission up to 57.8% and 54.3%, with the PVC lamination and coating, respectively. However, the coated MDF samples showed 5.3% increase in the emission when their edges were not sealed, indicating a FE form the solvent used for coating. These results showed that the type of surface lamination materials on wood-based composite panels has a great impact on their resultant FE, indicating that the influence of surface laminating materials should be taken into consideration for the formaldehyde mission measurement.

Bending Creep Property of Cross-Laminated Woods Made With Six Domestic Species

  • Byeon, Jin-Woong;Kim, Tae-Ho;Yang, Jae-Kyung;Byeon, ee-Seop;Park, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.689-702
    • /
    • 2017
  • In this study, with the view to using effectively small and medium diameter Korean domestic woods as structural materials, cross-laminated woods were manufactured by using six species of Korean domestic softwoods and hardwoods, and bending creep properties were investigated for each species. The creep curves showed the shape of the exponential function plot, and the creep curves after 1 hour were able to estimate by fitting it to the power law. The initial and creep compliances of cross-laminated woods showed the higher values in wood species with a low density than in that with a high density. And by cross-laminating, the initial and creep compliances perpendicular to the grain considerably decreased, the extent of the decrease was found to be greater in creep deformation than in initial deformation. The creep anisotropies of cross-laminated woods were considerably decreased by cross-laminating. The relative creep of $C_{\bot}$ type composed of perpendicular-direction lamina in the faces decreased 0.59 - 0.64 times compared to that of $P_{\bot}$ type composed of perpendicular-direction laminae in all layers, and that for $C_{\parallel}$ type composed of parallel-direction laminae in the faces increased 1.5 - 1.6 times compared to that of $P_{\parallel}$ type composed of parallel-direction laminae in all layers.

Mechanical Properties of Composite Materials Composed of Structural Steel and Structural Glued Laminated Timber (구조용 강철과 구조용 집성재 복합재료 보의 역학적 성질)

  • Jang, Sangsik;Kim, Yunhui;Jang, Youngik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.300-309
    • /
    • 2009
  • The effective utilization of wood structure is encouraged to preserve natural resources and the global environment. Long-span and large-scale structures are preferred to promote demand for wood. This study attempts to develop new Fire-resistance Composite Material composed of Structural steel and Structural glued laminated timber for long-span and large-scale structures. Prior to take a fire-resistance test, compare properties of bending strength with Composite material composed of Structural steel and Structural glued laminated timber, structural steel and structural provides the stability of the structure, but the structural glued laminated timber has high value elasticity of bending. Using the Composite material will improve structural stability and Eco-friend construction environment.

The Analysis of Thermal Conductivity and Basic Quality Performances of Decoration Wood-based Flooring Board Laminated with PVC Surface Decoration Materials (PVC 표면치장재를 적층한 치장목질마루판의 열특성 및 기초 품질성능 분석)

  • Park, Cheul-Woo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.53-60
    • /
    • 2018
  • For test on flooring board laminated with PVC decoration materials in order to replace the current surface materials such as HPL in decoration wood-based flooring board. the Results of comparison and analysis are as follows: For thermal conductivity, flooring board decorated with PVC did not show huge differences when temperature was rising and lowering compared to the flooring materials laminated with the existing HPL surface materials. It seems the most meaningful results for using it as indoor flooring materials. That is, in Korea where there is the culture focusing on ondol heating, use amount of heat energy and efficiency of flooring materials are very important and sensitive issues, involving immediately with household economy of final consumers, and it might be a criteria to judge basic performances required as flooring materials. As a result of the analysis on mandatory durability test items such as abrasion resistance, absorption width expansion rate, impact resistance, surface hardness, and impact absorption for flooring materials, compared to flooring board laminated with general HPL surface decoration materials, decoration wood-based flooring board laminated with PVC surface decoration materials which is higher abrasion resistance with smaller transformation and has better durability and impact absorption of the surface, is available for actual application as indoor flooring board, and for replacing surface decoration materials impregnated with heat-hardened resion such as HPL.

Structural Properties of Steel-glulam Composite Column

  • Jang, Sang-Sik;Kim, Yun-Hui;Shin, Il-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.399-404
    • /
    • 2010
  • A new green home designed to save money while at the same time saving the environment with some of the finest green features available in the market. Composite column composed of structural steel and structural glued laminated timber is avery Eco-friendly building products for design building because that use recycled or second hand. For compare to compressive strength of structural glued laminated timber (glulam), structural steel, and composite column (steel-glulam), tested compressive strength of each specimen. 1) structural glued laminated timber : Theoretical compressive strength is 151.6 kN similar to elastic limits. 2) structural steel (H type) : Theoretical compressive strength is 148.2 kN little under the elastic limits. 3) structural steel (D type) : Theoretical compressive strength is 147.3 kN upper than the elastic limits. 4) composite column : Actual elastic limits are about 600 kN. Result in, composite column improve compressive strength of Structural steel column and provide structural stability of the building.

Shear Performance of PUR Adhesive in Cross Laminating of Red Pine

  • Kim, Hyung-Kun;Oh, Jung-Kwon;Jeong, Gi-Young;Yeo, Hwan-Myeong;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.158-163
    • /
    • 2013
  • Cross laminated timber (CLT) has been an rising issue as a promising building material replacing steel-concrete in mid story rise construction. But, there was no specific standard for CLT because it had been developed in industrial section. Recently, new draft for requirements of CLT was proposed by EN which suggested to evaluate the performance of adhesive in CLT by the same method as glulam. But, it has been reported that shear performance of cross laminated timber is governed by rolling shear. Therefore, block shear tests were carried out to compare parallel to grain laminating and cross laminating using commercial one component PUR (Poly urethane resin). The result showed that the current glulam standard for evaluating bonding performance is not appropriate for CLT. Beacause shear strength of cross laminating decreased to 1/3 of parallel to grain laminating and this strength was representing shear performance of wood itself not the bond. However, cross laminating showed no significant effect on wood failure. Thus, wood failure can be used as a requirement of CLT bonding. Based on the results, cross laminating effect should be included when evaluating adhesive performance of CLT correctly and should be considered as an important factor.

Bonding Performance of Adhesives with Lamina in Structural Glulam Manufactured by High Frequency Heating System

  • Kim, Keon-Ho;Kim, Se-Jong;Yang, Sang-Yun;Yeo, Hwanmyeong;Eom, Chang-Deuk;Shim, Kugbo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.682-690
    • /
    • 2015
  • The bonding performance of two types of wood adhesives, namely phenol-resorcinol-formaldehyde (PRF) resin and melamine-urea-formaldehyde (MUF) resin for glued laminated timber manufactured by high frequency (HF) heating was evaluated. The HF heating system consists of HF oscillator with dielectric heating system for curing adhesives, and hydraulic press system for clamping glued laminated timber. The designed frequency and output power of the HF system was as 5 MHz and 60 kW, respectively. To verify dielectric heating mechanism under HF oscillation, the heat loss factors of laminae and adhesives were measured. The results show that it is possible to selectively heat adhesives for their curing due to the remarkably higher loss factor of the adhesives than those of wood laminae. The temperature of adhesive in the bonding line reached up to the set temperature within a few seconds by high frequency oscillating, which advanced the curing of adhesive afterwards. The bonding performance, such as shear strength of bonding line, water soaking delamination, and boiling water soaking delamination of PRF resin met the requirement of Korean Standard (KS), however the MUF resin did not meet the KS requirement of boiling water soaking delamination. These results indicate that the HF heating system is successful to manufacture glued laminated timbers with PRF resins to meet the bonding requirements.