• Title/Summary/Keyword: laminated rubber bearing

Search Result 54, Processing Time 0.025 seconds

A Study on Isolation Performance of High Damping Rubber Bearing Through Shaking Table Test and Analysis (진동대 실험 및 해석을 통한 고감쇠 고무받침의 면진성능 연구)

  • Kim, Hu-Seung;Oh, Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.601-611
    • /
    • 2016
  • The research, development and use of seismic isolation systems have been increasing with the gradual development of structure safety assurance methods for earthquakes. The High Damping Rubber Bearing (HDRB), one type of seismic isolation system, is a Laminated Rubber Bearing using special High Damping Rubber. However, as its damping function is slightly lower than that of the Lead Rubber Bearing, a similar seismic isolation system, its utilization has not been high. However, the HDRB has a superior damping force to the Natural Rubber Bearing, which has similar materials and shapes, and the existing Lead Rubber Bearing has a maleficence problem in that it contains lead. Thus, studies on HDRBs that do not use lead have increased. In this study, a test targeting the HDRB was done to examine its various dependence properties, such as its compressive stress, frequency and repeated loading. To evaluate the HDRB's seismic performance in response to several earthquake waves, the shaking table test was performed and the results analyzed. The test used the downscaled bridge model and the HDRB was divided into seismic and non-seismic isolation. Consequently, when the HDRB was applied, the damping effect was higher in the non-seismic case. However, its responses on weak foundations, such as in Mexico City, represented increased shapes. Thus, its seismic isolator.

Evaluation of Seismic Performance of Steel Frame before and after Application of Seismic Isolator (면진 장치 적용 전, 후의 철골조의 내진 성능 평가)

  • 김대곤;이상훈;안재현;박칠림
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.47-62
    • /
    • 1998
  • The laminated elastomeric bearing and the lead-rubber bearing were designed to isolate one bay-two story steel frame which is designed for only gravity load. The seismic performance is evaluated for the designed steel frame before and after application of these seismic isolators between the super structure and the foundation. These isolators can improve the seismic capacity of the steel frame. Especially, by inserting the lead plug into the center of the laminated elastomeric bearing, the initial stiffness of th bearing can be increased, thus rather large lateral displacement can be prevented under the frequent service lateral load. During the strong earthquake, yielding of the lead can increase the capacity of the energy dissipation.

  • PDF

Shaking Table Test of the Model of Five-story Stone Pagoda of Sang-Gye-Sa Mounted on Base Isolation Systems (쌍계사 오층석탑모델에 대한 지진격리효과 진동대실험)

  • 김재관;이원주;김영중;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.331-338
    • /
    • 2001
  • Seismic performances of the base isolated model of Five Story Stone Pagoda were studied through shaking table tests. Friction pendulum system (FPS), Pure-friction system with laminated rubber bearing (LRB) and Ball with rubber bearing were selected fur the comparison of performances. Performances of specially designed isolation systems were tested dynamically using shaking table. The test results of isolated model are compared with those of fixed base model. Compared with fixed base model, the isolated model showed that it could withstand much higer intensity of earthquake motion. The Effective Peak Ground Acceleration (EPGA) value of isolated model when the top component tipped over was above twice of that value in case of fixed base model. According to the additional test results, the lower value of coefficient of friction than that of common frictional base isolation systems is more effective to protect the piled multi-block system of Pagoda against moderate intesity of ground motion.

  • PDF

Seismic behavior of structures isolated with a hybrid system of rubber bearings

  • Chen, Bo-Jen;Tsai, C.S.;Chung, L.L.;Chiang, Tsu-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.22 no.6
    • /
    • pp.761-783
    • /
    • 2006
  • The enlargement of interest in base isolators as an earthquake-proof design strategy has dramatically accelerated experimental studies of elastomeric bearings worldwide. In this paper, a new base isolator concept that is a hybrid system of rubber bearings is proposed. Uniaxial, biaxial, and triaxial shaking table tests are also performed to study the seismic behavior of a 0.4-scale three-story isolated steel structure in the National Center for Research on Earthquake Engineering in Taiwan. Experimental results demonstrate that structures with a hybrid system of rubber bearings composed of stirruped rubber bearings and laminated rubber bearings can actually decrease the seismic responses of the superstructure. It has been proved through the shaking table tests that the proposed hybrid system of rubber bearings is a very promising tool to enhance the seismic resistance of structures. Moreover, it is demonstrated that the proposed analytical model in this paper can predict the mechanical behavior of the hybrid system of rubber bearings and seismic responses of the base-isolated structures.

An Experimental Study of the Long-term Creep characteristic of High Damping Rubber Bearings (고감쇠 고무받침의 장기 크리프 특성에 대한 실험적 연구)

  • Oh, Ju;Park, Jin-Young;Park, Kun-Nok;Kim, See-Dong;Park, Sung-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.53-60
    • /
    • 2009
  • Isolated structures use devices such as high damping rubber bearings (HDRB) in order to dramatically reduce the seismic forces transmitted from the substructure to the superstructure. The laminated rubber bearing is the most important structural member of a seismic isolation system. The basic characteristics of rubber bearings have been confirmed through compression tests, compressive shearing tests and creep tests. This paper presents the results and analysis of a 1000hr, ongoing creep test conducted at 7.5MPa, 8.37MPa in our laboratory. The long-term behavior of bridge bearings, such as high-damping rubber bearings, will be discovered through a compression creep test subjected to actual environmental conditions. These tests indicated that the maximum creep deformation is about $0.3{\sim}1.92%$ of total rubber thickness.

Shaking Table Test of Rectangular Liquid Container with Base-Isolation System (사각형 면진유체저장조의 진동대실험)

  • 전영선;최인길
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.122-129
    • /
    • 1995
  • The seismic behavior of a rectangular liquid container with high damping laminated rubber bearing is investigated through the scaled model tests. The results are compared with those for non-isolated model, and those by analytical methods. It is shown that the optimum dynamic properties of isolation system can reduce the acceleration response in the superstructure significantly and prevent the amplification of sloshing height.

  • PDF

Base Isolator의 제작 및 특성실험

  • 김남식;유춘화;이동근
    • Computational Structural Engineering
    • /
    • v.5 no.4
    • /
    • pp.41-45
    • /
    • 1992
  • 본 실험에서는 가장 널리 쓰이는 base isolator의 한 종류로서 laminated rubber bearing을 제작하여 정적 및 동적 특성실험을 수행하였다. 앞에서 간략하게 언급한 실험결과에 대한 분석자료는 상부구조물과 기초와의 분리를 목적으로 본 실험에서 제작한 base isolator의 활용가능성을 검증하였다. 일반적으로 base isolator가 갖는 특성을 대부분 포함하고 있지만 본 실험결과에서 얻은 개선점은 i) 수직강성의 보강 ii) mounting plate와의 볼트연결부분 보완 iii) 최대전단변형을 증가시키기 위해 base isolator의 전체높이 조정 등으로 요약할 수 있다.

  • PDF

2-D Dynamic analysis method of base-isolated pool structure (면진수조의 2차원 동적 해석기법 개발)

  • 전영선;최인걸;김진웅
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.67-74
    • /
    • 1995
  • This study develops 2-D analysis method of a base-isolated pool structure, and verifies the method through shaking table test using a scaled model. A wall of the pool structure is modeled as lumped mass, and added mass of the fluid is imposed on the nodes of the structure to consider the hydrodynamic effect of contained fluid. The equation of motion of base-isolated pool structure is obtained by coupling of two equations for superstructure composed of wall and fluid, and for bottom slab and isolator. The scaled model for shaking table test is made with transparent acryle, and 4-high damping laminated rubber bearings are used. The responses of the scaled model by the test are generally good agreement with those by the analysis. It is shown that 2-D analysis method gives somewhat conservative results.

  • PDF

New approach in design of seismic isolated buildings applying clusters of rubber bearings in isolation systems

  • Melkumyan, Mikayel G.
    • Earthquakes and Structures
    • /
    • v.4 no.6
    • /
    • pp.587-606
    • /
    • 2013
  • The given paper presents a new approach in design of seismic isolation systems of base isolated buildings. The idea is to install not one big size rubber bearing under the columns and/or shear walls, or one by one with certain spacing under the load-bearing walls, but to install a group/cluster of small size bearings, in order to increase the overall effectiveness of the isolation system. The advantages of this approach are listed and illustrated by the examples. Also the results of analyses of some buildings where the approach on installation of clusters of rubber bearings was used in their isolation systems are given for two cases: i) when the analyses are carried out based on the provisions of the Armenian Seismic Code, and ii) when the time history analyses are carried out. Obtained results are compared and discussed. Paper also presents, as an example, detailed analysis and design of the 18-story unique building in one of the residential complexes in Yerevan. Earthquake response analyses of this building were carried out in two versions, i.e. when the building is base isolated and when it is fixed base. Several time histories were used in the analyses. Comparison of the obtained results indicates the high effectiveness of the proposed structural concepts of isolation systems and the need for further improvement of the Seismic Code provisions regarding the values of the reduction factors. A separate section in the paper dedicated to the design of high damping laminated rubber-steel bearings and to results of their tests.

Free Vibration Test for Base Isolated Real Size One Bay-Two Story Steel Frame (면진된 실대형 일경간-이층 철골조 자유진동 실험)

  • 김대곤
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.391-398
    • /
    • 2000
  • To evaluate the seismic performance of a base isolated building accurate analytical model should be selected. The analytical results such as reduced accelerations member forces and relative displacements of the superstructure of the base isolated building are only meaningful when the analytical model is close enough to the real structure. Real size one bay-two story steel frame and two kinds of seismic isolators(laminated elastomeric bearing and lead-rubber bearing) are designed. manufactured and constructed in the laboratory. Free vibration tests using fuse bars were conducted to evaluate the change of dynamic characteristics(period and damping) before and after base isolation of the steel frame. The experimental results of free vibration tests were also used as a bench mark for adjusting the selected analytical modeling to real base isolated steel frame.

  • PDF