• 제목/요약/키워드: laminated composite structure

검색결과 190건 처리시간 0.025초

탄소섬유 복합재로 된 자동차 루프에 대한 동특성 해석 및 실험 (Analysis and Experiment on dynamic characteristics of a Carbon Fiber Reinforced Composite Automotive Roof)

  • 제형호;진용선;김찬묵;강영규;사종성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.330-335
    • /
    • 2003
  • Analysis and experiment on dynamic characteristics of automotive roof have been carried out experimentally and numerically to design a lightweight roof. Finite element analysis of a conventional steel automotive roof was verified by experiments on vibration characteristics. The dynamic analysis of carbon fiber reinforced composite automotive roof shows that the roof stiffness changes as the fiber orientation of the laminated panel changes. Optimization results yielded a composite roof, which was 52% lighter, than the steel conventional steel automotive roof. This paper addresses a design strategy of composite roof for weight reduction.

  • PDF

Residual Stress on Concentric Laminated Fibrous Al2O3-ZrO2 Composites on Prolonged High Temperature Exposure

  • Sarkar, Swapan Kumar;Lee, Byong Taek
    • 한국재료학회지
    • /
    • 제23권9호
    • /
    • pp.531-536
    • /
    • 2013
  • This paper investigates the effect of prolonged high temperature exposure on concentric laminated $Al_2O_3-ZrO_2$ composites. An ultrafine scale microstructure with a cellular 7 layer concentric lamination with unidirectional alignment was fabricated by a multi-pass extrusion method. Each laminate in the microstructure was $2-3{\mu}m$ thick. An alternate lamina was composed of 75%$Al_2O_3$-(25%m-$ZrO_2$) and t-$ZrO_2$ ceramics. The composite was sintered at $1500^{\circ}C$ and subjected to $1450^{\circ}C$ temperature for 24 hours to 72 hours. We investigated the effect of long time high temperature exposure on the generation of residual stress and grain growth and their effect on the overall stability of the composites. The residual stress development and its subsequent effect on the microstructure with the edge cracking behavior mechanism were investigated. The residual stress in the concentric laminated microstructure causes extensive micro cracks in the t-$ZrO_2$ layer, despite the very thin laminate thickness. The material properties like Vickers hardness and fracture toughness were measured and evaluated along with the microstructure of the composites with prolonged high temperature exposure.

An approach to a novel modelling of structural reinforced glass beams in modern material components

  • Foti, Dora;Carnimeo, Leonarda;Lerna, Michela;Sabba, Maria Francesca
    • Advances in Computational Design
    • /
    • 제7권3호
    • /
    • pp.173-188
    • /
    • 2022
  • In modern buildings, glass is considered a structurally unsafe material due to its brittleness and unpredictable failure behavior. The possible use of structural glass elements (i.e., floors, beams and columns) is generally prevented by its poor tensile strength and a frequent occurrence of brittle failures. In this study an innovative modelling based on an equivalent thickness concept of laminated glass beam reinforced with FRP (Fiber Reinforced Polymer) composite material and of glass plates punched is presented. In particular, the novel numerical modelling applied to an embedding Carbon FRP-rod in the interlayer of a laminated structural glass beam is considered in order to increase both its failure strength, together with its post-failure strength and ductility. The proposed equivalent modelling of different specimens enables us to carefully evaluate the effects of this reinforcement. Both the responses of the reinforced beam and un-reinforced one are evaluated, and the corresponding results are compared and discussed. A novel equivalent modelling for reinforced glass beams using FRP composites is presented for FEM analyses in modern material components and proved estimations of the expected performance are provided. Moreover, the new suggested numerical analysis is also applied to laminated glass plates with wide holes at both ends for the technological reasons necessary to connect a glass beam to a structure. Obtained results are compared with an integer specimen. Experimental considerations are reported.

동적 특성이 고려된 역해석를 이용한 적층 복합재료 내부의 탄소섬유 프리프레그의 물성 예측 (Prediction of Material Properties of Carbon Fiber Prepreg in the Laminated Composite Using Reverse Analysis with Dynamic Characteristics)

  • 황문영;강래형
    • Composites Research
    • /
    • 제32권4호
    • /
    • pp.177-184
    • /
    • 2019
  • 이미 제작된 복합재료 제품을 분석하여 층별로 어떤 기계적 물성을 가지는지 알아낼 수 있다면, 기존 제품에 비해 더 좋은 성능을 내는 복합재료 개발을 수행할 수 있게 된다. 본 연구에서는 프리프레그를 적층하여 제작된 복합재료 구조물에 대해 역설계 기법을 적용하여 내부 프리프레그 층의 물성을 계산하고자 하였다. 단순히 인장시험으로 얻어지는 물리량을 이용한 경우와 인장시험 및 모드 해석을 통해 얻어지는 물리량을 이용한 경우를 비교한 결과 후자의 정확도가 더 높음을 알 수 있었다. 최종적으로 예측된 $E_1$의 최대 오차는 0.09%였고 예측된 $E_2$의 최대 오차는 7%였다.

복합재 지주를 적용한 가드레일 구조체의 비선형 유한요소 충돌 해석 (Nonlinear Finite Element Crash Analysis of Guardrail Structures Using Supports Made of Composite Materials)

  • 김규동;이상열
    • Composites Research
    • /
    • 제29권6호
    • /
    • pp.363-368
    • /
    • 2016
  • 본 연구에서는 복합소재를 적용한 가드레일 구조체에 대하여 비선형 유한요소 충돌해석을 수행하였다. 충돌에 대한 영향에 저항하기 위하여 [0/90/90/0]으로 적층된 Boron 계열의 보강섬유가 함침된 복합소재를 적용하였다. 또한, 지반-구조물 상호작용 모델을 적용하여 가드레일 구조체의 충돌 시 적합한 지반의 물리적 상수를 도출하였다. 특히, 가드레일의 복잡한 충돌 메커니즘을 다양한 변수 해석을 통하여 규명하였다. 변수 해석은 복합소재 지주의 두께변화와 이에 대한 충돌 성능의 영향에 초점을 두었다. 다양한 변수에 대한 해석 결과는 기존 강재를 사용한 결과와 비교하여 검증하였다.

Optimal fiber volume fraction prediction of layered composite using frequency constraints- A hybrid FEM approach

  • Anil, K. Lalepalli;Panda, Subrata K.;Sharma, Nitin;Hirwani, Chetan K.;Topal, Umut
    • Computers and Concrete
    • /
    • 제25권4호
    • /
    • pp.303-310
    • /
    • 2020
  • In this research, a hybrid mathematical model is derived using the higher-order polynomial kinematic model in association with soft computing technique for the prediction of best fiber volume fractions and the minimal mass of the layered composite structure. The optimal values are predicted further by taking the frequency parameter as the constraint and the projected values utilized for the computation of the eigenvalue and deflections. The optimal mass of the total layered composite and the corresponding optimal volume fractions are evaluated using the particle swarm optimization by constraining the arbitrary frequency value as mass/volume minimization functions. The degree of accuracy of the optimal model has been proven through the comparison study with published well-known research data. Further, the predicted values of volume fractions are incurred for the evaluation of the eigenvalue and the deflection data of the composite structure. To obtain the structural responses i.e. vibrational frequency and the central deflections the proposed higher-order polynomial FE model adopted. Finally, a series of numerical experimentations are carried out using the optimal fibre volume fraction for the prediction of the optimal frequencies and deflections including associated structural parameter.

The Type setting and Application of the New-hanok type Public Buildings - Focused on Cases were completed after 2000 -

  • Park, Joon-Young;Kwon, Hyuck-Sam;Cheong, So-Yi;Bae, Kang-Won
    • KIEAE Journal
    • /
    • 제15권5호
    • /
    • pp.47-57
    • /
    • 2015
  • Purpose: The purpose of this study is to set the type of 'the New-hanok type Public Buildings' through a case study for the hanok public buildings completed after 2000 years, and to analyze planned properties of the type. This is significant Establishing legal status of 'the New-hanok type Public Buildings' and seeing review of application possibilities of the type for providing a systematic government support measures of 'the New-hanok type public buildings' when models developing future. Method: Method of research is the first to examine the current laws and established the definition and legal status of 'the New-hanok type Public Buildings'. Followed by Setting the type classification criteria as to classify the type of 'the New-hanok type public buildings' and research architectural overview of selected cases by Literature, Internet searches, etc. After systematizing of the types classification of analysis cases, Characteristics of the type of the building structure looks catch classify in spatial structure, function, beauty. Finally, review application possibilities of the type for systematic government support measures establish when models developing of 'the New-hanok type Public Buildings' through a comprehensive analysis. Result: Selected cases were categorized as 3 types according by structural standard based on the core concept of 'the New-hanok type Public Buildings' set in this study. This can be divided into 'Wooden Structure type' and 'Composite structure - Convergence type' and 'Composite structure - juxtaposed type', 'Wooden Structure type' was re-classified by divided into '(1)Traditional Korean Wooden Structure' and '(2)Laminated Wood Wooden Structure'.

Mechanical behaviour of a syntactic foam/glass fibre composite sandwich: experimental results

  • Papa, Enrico;Corigliano, Alberto;Rizzi, Egidio
    • Structural Engineering and Mechanics
    • /
    • 제12권2호
    • /
    • pp.169-188
    • /
    • 2001
  • This note presents the main results of an experimental investigation into the mechanical behaviour of a composite sandwich conceived as a lightweight material for naval engineering applications. The sandwich structure is formed by a three-dimensional glass fibre/polymer matrix fabric with transverse piles interconnecting the skins; the core is filled with a polymer matrix/glass microspheres syntactic foam; additional Glass Fibre Reinforced Plastics extra-skins are laminated on the external facings of the filled fabric. The main features of the experimental tests on syntactic foam, skins and sandwich panels are presented and discussed, with focus on both in-plane and out-of-plane responses. This work is part of a broader research investigation aimed at a complete characterisation, both experimental and numerical, of the complex mechanical behaviour of this composite sandwich.

위성체용 복합재료 광학 탑재 구조물 설계 연구 (A study on the development of the composite optical bench design)

  • 김병선;김진봉;하종학;이주훈;김진희;김경원;김성훈;황도순;김동욱
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.228-231
    • /
    • 2004
  • The optical bench was designed using composite material, M40J/Cyanate Ester. Mechanical tests, thermal tests were carried out for M40J and structural vibration FEM analysis was performed. From the experimental results, the material properties of M40J/Cyanate Ester were obtained in longitudinal and transverse directions. By applying the properties into FEM vibration analysis, a proper stacking sequence was proposed for the laminated facesheets, so that natural frequency of the platform structure satisfy the design specification.

  • PDF

병렬처리 기법을 이용한 복합재 적층 구조물의 면내 파손 해석 소프트웨어 개발 (Development of In-Plane Strength Analysis Software for Composite Laminated Structure with Parallel Processing Technique)

  • 정예지;최수영;안현수;하석운;문용호
    • 한국항공우주학회지
    • /
    • 제46권2호
    • /
    • pp.133-140
    • /
    • 2018
  • 본 논문에서는 복합재 적층 구조물의 면내 구조 해석을 위한 자동화 소프트웨어를 개발한다. 개발된 소프트웨어는 다양한 파손 기준을 제공하며 사용자의 편리성을 고려하여 해석 결과를 출력한다. 또한 병렬처리 기법에 기반한 일괄 처리 해석(batch job analysis) 기능을 지원한다. 구현된 소프트웨어의 성능을 검증하기 위하여 소프트웨어에서 계산된 안전 여유와 자체적으로 사용 중인 in-house 방식과 실제 시편 실험에서 얻어진 안전 여유간의 비교를 수행하였다. 비교 결과 in-house 방식과는 0.01 이하의 오차가 있었으며 시편 실험과는 약 ${\pm}10%$ 이내의 오차가 존재함을 확인하였다. 또한 병렬처리 기법을 적용한 일괄 처리 해석 작업의 실행 속도 개선을 확인하였다.